Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Somma a entrambi i lati dell'equazione.
Passaggio 2
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3
Passaggio 3.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 3.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 3.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4
Imposta ognuna delle soluzioni per risolvere per .
Passaggio 5
Passaggio 5.1
Calcola la secante inversa di entrambi i lati dell'equazione per estrarre dall'interno della secante.
Passaggio 5.2
Semplifica il lato destro.
Passaggio 5.2.1
Il valore esatto di è .
Passaggio 5.3
La funzione secante è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 5.4
Semplifica .
Passaggio 5.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 5.4.2
Riduci le frazioni.
Passaggio 5.4.2.1
e .
Passaggio 5.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 5.4.3
Semplifica il numeratore.
Passaggio 5.4.3.1
Moltiplica per .
Passaggio 5.4.3.2
Sottrai da .
Passaggio 5.5
Trova il periodo di .
Passaggio 5.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 5.5.2
Sostituisci con nella formula per il periodo.
Passaggio 5.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 5.5.4
Dividi per .
Passaggio 5.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 6
Passaggio 6.1
Calcola la secante inversa di entrambi i lati dell'equazione per estrarre dall'interno della secante.
Passaggio 6.2
Semplifica il lato destro.
Passaggio 6.2.1
Il valore esatto di è .
Passaggio 6.3
La funzione secante è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 6.4
Semplifica .
Passaggio 6.4.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 6.4.2
Riduci le frazioni.
Passaggio 6.4.2.1
e .
Passaggio 6.4.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 6.4.3
Semplifica il numeratore.
Passaggio 6.4.3.1
Moltiplica per .
Passaggio 6.4.3.2
Sottrai da .
Passaggio 6.5
Trova il periodo di .
Passaggio 6.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 6.5.2
Sostituisci con nella formula per il periodo.
Passaggio 6.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 6.5.4
Dividi per .
Passaggio 6.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 7
Elenca tutte le soluzioni.
, per qualsiasi intero
Passaggio 8
Consolida le risposte.
, per qualsiasi intero