Trigonometria Esempi

求第II象限中的其他三角函数值 csc(theta)=5/4
Passaggio 1
Usa la definizione della cosecante per trovare i lati noti del triangolo destro nella circonferenza unitaria. Il quadrante determina il segno di ogni valore.
Passaggio 2
Trova il lato adiacente del triangolo sulla circonferenza unitaria. Dato che l'ipotenusa e il lato opposto sono noti, usa il teorema di Pitagora per trovare il lato rimanente.
Passaggio 3
Sostituisci i valori noti all'interno dell'equazione.
Passaggio 4
Semplifica l'interno del radicale.
Tocca per altri passaggi...
Passaggio 4.1
Nega .
Adiacente
Passaggio 4.2
Eleva alla potenza di .
Adiacente
Passaggio 4.3
Eleva alla potenza di .
Adiacente
Passaggio 4.4
Moltiplica per .
Adiacente
Passaggio 4.5
Sottrai da .
Adiacente
Passaggio 4.6
Riscrivi come .
Adiacente
Passaggio 4.7
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Adiacente
Passaggio 4.8
Moltiplica per .
Adiacente
Adiacente
Passaggio 5
Trova il valore del seno.
Tocca per altri passaggi...
Passaggio 5.1
Usa la definizione di seno per trovare il valore di .
Passaggio 5.2
Sostituisci i valori noti.
Passaggio 6
Trova il valore del coseno.
Tocca per altri passaggi...
Passaggio 6.1
Usa la definizione di coseno per trovare il valore di .
Passaggio 6.2
Sostituisci i valori noti.
Passaggio 6.3
Sposta il negativo davanti alla frazione.
Passaggio 7
Trova il valore della tangente.
Tocca per altri passaggi...
Passaggio 7.1
Usa la definizione di tangente per trovare il valore di .
Passaggio 7.2
Sostituisci i valori noti.
Passaggio 7.3
Sposta il negativo davanti alla frazione.
Passaggio 8
Trova il valore della cotangente.
Tocca per altri passaggi...
Passaggio 8.1
Usa la definizione di cotangente per trovare il valore di .
Passaggio 8.2
Sostituisci i valori noti.
Passaggio 8.3
Sposta il negativo davanti alla frazione.
Passaggio 9
Trova il valore della secante.
Tocca per altri passaggi...
Passaggio 9.1
Usa la definizione di secante per trovare il valore di .
Passaggio 9.2
Sostituisci i valori noti.
Passaggio 9.3
Sposta il negativo davanti alla frazione.
Passaggio 10
Questa è la soluzione per ogni valore trigonometrico.