Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Passaggio 1.1
Sia . Sostituisci tutte le occorrenze di con .
Passaggio 1.2
Scomponi da .
Passaggio 1.2.1
Scomponi da .
Passaggio 1.2.2
Eleva alla potenza di .
Passaggio 1.2.3
Scomponi da .
Passaggio 1.2.4
Scomponi da .
Passaggio 1.3
Sostituisci tutte le occorrenze di con .
Passaggio 2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3
Passaggio 3.1
Imposta uguale a .
Passaggio 3.2
Risolvi per .
Passaggio 3.2.1
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 3.2.2
Semplifica il lato destro.
Passaggio 3.2.2.1
Il valore esatto di è .
Passaggio 3.2.3
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 3.2.4
Sottrai da .
Passaggio 3.2.5
Trova il periodo di .
Passaggio 3.2.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 3.2.5.2
Sostituisci con nella formula per il periodo.
Passaggio 3.2.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 3.2.5.4
Dividi per .
Passaggio 3.2.6
Il periodo della funzione è , quindi i valori si ripetono ogni gradi in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 4
Passaggio 4.1
Imposta uguale a .
Passaggio 4.2
Risolvi per .
Passaggio 4.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 4.2.2.1
Dividi per ciascun termine in .
Passaggio 4.2.2.2
Semplifica il lato sinistro.
Passaggio 4.2.2.2.1
Elimina il fattore comune di .
Passaggio 4.2.2.2.1.1
Elimina il fattore comune.
Passaggio 4.2.2.2.1.2
Dividi per .
Passaggio 4.2.2.3
Semplifica il lato destro.
Passaggio 4.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 4.2.3
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 4.2.4
Semplifica il lato destro.
Passaggio 4.2.4.1
Calcola .
Passaggio 4.2.5
La funzione coseno è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 4.2.6
Sottrai da .
Passaggio 4.2.7
Trova il periodo di .
Passaggio 4.2.7.1
Si può calcolare il periodo della funzione usando .
Passaggio 4.2.7.2
Sostituisci con nella formula per il periodo.
Passaggio 4.2.7.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 4.2.7.4
Dividi per .
Passaggio 4.2.8
Il periodo della funzione è , quindi i valori si ripetono ogni gradi in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 5
La soluzione finale è data da tutti i valori che rendono vera.
, per qualsiasi intero
Passaggio 6
Combina e in .
, per qualsiasi intero