Inserisci un problema...
Precalcolo Esempi
Passaggio 1
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 2
Passaggio 2.1
Aggiungi a entrambi i lati della diseguaglianza.
Passaggio 2.2
Trova la radice quadrata specificata di entrambi i lati della diseguaglianza per eliminare l'esponente sul lato sinistro.
Passaggio 2.3
Semplifica l'equazione.
Passaggio 2.3.1
Semplifica il lato sinistro.
Passaggio 2.3.1.1
Estrai i termini dal radicale.
Passaggio 2.3.2
Semplifica il lato destro.
Passaggio 2.3.2.1
Semplifica .
Passaggio 2.3.2.1.1
Riscrivi come .
Passaggio 2.3.2.1.2
Estrai i termini dal radicale.
Passaggio 2.3.2.1.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 2.4
Scrivi a tratti.
Passaggio 2.4.1
Per individuare l'intervallo per la prima parte, trova dove l'interno del valore assoluto è non negativo.
Passaggio 2.4.2
Nella parte in cui è non negativo, rimuovi il valore assoluto.
Passaggio 2.4.3
Per individuare l'intervallo per la seconda parte, trova dove l'interno del valore assoluto è negativo.
Passaggio 2.4.4
Nella parte in cui è negativo, rimuovi il valore assoluto e moltiplica per .
Passaggio 2.4.5
Scrivi a tratti.
Passaggio 2.5
Trova l'intersezione di e .
Passaggio 2.6
Dividi per ciascun termine in e semplifica.
Passaggio 2.6.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 2.6.2
Semplifica il lato sinistro.
Passaggio 2.6.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 2.6.2.2
Dividi per .
Passaggio 2.6.3
Semplifica il lato destro.
Passaggio 2.6.3.1
Dividi per .
Passaggio 2.7
Trova l'unione delle soluzioni.
o
o
Passaggio 3
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 4
Passaggio 4.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.2
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 4.3
Riscrivi come .
Passaggio 4.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4.4.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 4.4.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 4.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 5
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 6
Passaggio 6.1
Poni il numeratore uguale a zero.
Passaggio 6.2
Risolvi l'equazione per .
Passaggio 6.2.1
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 6.2.2
Semplifica .
Passaggio 6.2.2.1
Riscrivi come .
Passaggio 6.2.2.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 6.2.2.3
Più o meno è .
Passaggio 7
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 8