Inserisci un problema...
Precalcolo Esempi
Passaggio 1
Imposta uguale a .
Passaggio 2
Passaggio 2.1
Scomponi il primo membro dell'equazione.
Passaggio 2.1.1
Raggruppa i termini.
Passaggio 2.1.2
Scomponi da .
Passaggio 2.1.2.1
Scomponi da .
Passaggio 2.1.2.2
Scomponi da .
Passaggio 2.1.2.3
Scomponi da .
Passaggio 2.1.3
Riscrivi come .
Passaggio 2.1.4
Sia . Sostituisci tutte le occorrenze di con .
Passaggio 2.1.5
Scomponi usando la regola del quadrato perfetto.
Passaggio 2.1.5.1
Riscrivi come .
Passaggio 2.1.5.2
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
Passaggio 2.1.5.3
Riscrivi il polinomio.
Passaggio 2.1.5.4
Scomponi usando la regola del trinomio perfetto al quadrato , dove e .
Passaggio 2.1.6
Sostituisci tutte le occorrenze di con .
Passaggio 2.1.7
Scomponi da .
Passaggio 2.1.7.1
Scomponi da .
Passaggio 2.1.7.2
Scomponi da .
Passaggio 2.1.7.3
Scomponi da .
Passaggio 2.1.8
Sia . Sostituisci tutte le occorrenze di con .
Passaggio 2.1.9
Scomponi usando il metodo AC.
Passaggio 2.1.9.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 2.1.9.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 2.1.10
Scomponi.
Passaggio 2.1.10.1
Sostituisci tutte le occorrenze di con .
Passaggio 2.1.10.2
Rimuovi le parentesi non necessarie.
Passaggio 2.2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.3
Imposta uguale a e risolvi per .
Passaggio 2.3.1
Imposta uguale a .
Passaggio 2.3.2
Risolvi per .
Passaggio 2.3.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 2.3.2.3
Semplifica .
Passaggio 2.3.2.3.1
Riscrivi come .
Passaggio 2.3.2.3.2
Riscrivi come .
Passaggio 2.3.2.3.3
Riscrivi come .
Passaggio 2.3.2.3.4
Riscrivi come .
Passaggio 2.3.2.3.5
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 2.3.2.3.6
Sposta alla sinistra di .
Passaggio 2.3.2.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2.3.2.4.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 2.3.2.4.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 2.3.2.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2.4
Imposta uguale a e risolvi per .
Passaggio 2.4.1
Imposta uguale a .
Passaggio 2.4.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.5
Imposta uguale a e risolvi per .
Passaggio 2.5.1
Imposta uguale a .
Passaggio 2.5.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3