Inserisci un problema...
Precalcolo Esempi
Passaggio 1
Moltiplica ciascun termine per un fattore di che renderà tutti i denominatori uguali. In questo caso, tutti i termini hanno bisogno di un denominatore di .
Passaggio 2
Moltiplica l'espressione per un fattore di per creare il minimo comune denominatore di .
Passaggio 3
Sposta alla sinistra di .
Passaggio 4
Passaggio 4.1
Dividi per .
Passaggio 4.2
Moltiplica per .
Passaggio 5
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 6
Passaggio 6.1
Il valore esatto di è .
Passaggio 7
Passaggio 7.1
Dividi per ciascun termine in .
Passaggio 7.2
Semplifica il lato sinistro.
Passaggio 7.2.1
Elimina il fattore comune di .
Passaggio 7.2.1.1
Elimina il fattore comune.
Passaggio 7.2.1.2
Dividi per .
Passaggio 7.3
Semplifica il lato destro.
Passaggio 7.3.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 7.3.2
Moltiplica .
Passaggio 7.3.2.1
Moltiplica per .
Passaggio 7.3.2.2
Moltiplica per .
Passaggio 8
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 9
Passaggio 9.1
Semplifica.
Passaggio 9.1.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 9.1.2
e .
Passaggio 9.1.3
Riduci i numeratori su un comune denominatore.
Passaggio 9.1.4
Moltiplica per .
Passaggio 9.1.5
Sottrai da .
Passaggio 9.2
Dividi per ciascun termine in e semplifica.
Passaggio 9.2.1
Dividi per ciascun termine in .
Passaggio 9.2.2
Semplifica il lato sinistro.
Passaggio 9.2.2.1
Elimina il fattore comune di .
Passaggio 9.2.2.1.1
Elimina il fattore comune.
Passaggio 9.2.2.1.2
Dividi per .
Passaggio 9.2.3
Semplifica il lato destro.
Passaggio 9.2.3.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 9.2.3.2
Moltiplica .
Passaggio 9.2.3.2.1
Moltiplica per .
Passaggio 9.2.3.2.2
Moltiplica per .
Passaggio 10
Passaggio 10.1
Si può calcolare il periodo della funzione usando .
Passaggio 10.2
Sostituisci con nella formula per il periodo.
Passaggio 10.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 11
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero