Inserisci un problema...
Precalcolo Esempi
,
Passaggio 1
Somma a entrambi i lati dell'equazione.
Passaggio 2
Rappresenta il sistema di equazioni con una matrice.
Passaggio 3
Passaggio 3.1
Write in determinant notation.
Passaggio 3.2
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 3.3
Semplifica il determinante.
Passaggio 3.3.1
Semplifica ciascun termine.
Passaggio 3.3.1.1
Moltiplica per .
Passaggio 3.3.1.2
Moltiplica per .
Passaggio 3.3.2
Somma e .
Passaggio 4
Since the determinant is not , the system can be solved using Cramer's Rule.
Passaggio 5
Passaggio 5.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Passaggio 5.2
Find the determinant.
Passaggio 5.2.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 5.2.2
Semplifica il determinante.
Passaggio 5.2.2.1
Semplifica ciascun termine.
Passaggio 5.2.2.1.1
Moltiplica per .
Passaggio 5.2.2.1.2
Moltiplica per .
Passaggio 5.2.2.2
Somma e .
Passaggio 5.3
Use the formula to solve for .
Passaggio 5.4
Substitute for and for in the formula.
Passaggio 5.5
Elimina il fattore comune di e .
Passaggio 5.5.1
Scomponi da .
Passaggio 5.5.2
Elimina i fattori comuni.
Passaggio 5.5.2.1
Scomponi da .
Passaggio 5.5.2.2
Elimina il fattore comune.
Passaggio 5.5.2.3
Riscrivi l'espressione.
Passaggio 5.6
Sposta il negativo davanti alla frazione.
Passaggio 6
Passaggio 6.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Passaggio 6.2
Find the determinant.
Passaggio 6.2.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 6.2.2
Semplifica il determinante.
Passaggio 6.2.2.1
Semplifica ciascun termine.
Passaggio 6.2.2.1.1
Moltiplica per .
Passaggio 6.2.2.1.2
Moltiplica per .
Passaggio 6.2.2.2
Somma e .
Passaggio 6.3
Use the formula to solve for .
Passaggio 6.4
Substitute for and for in the formula.
Passaggio 6.5
Dividi per .
Passaggio 7
Elenca la soluzione al sistema di equazioni.