Inserisci un problema...
Precalcolo Esempi
Passaggio 1
Passaggio 1.1
Scomponi usando il teorema delle radici razionali.
Passaggio 1.1.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 1.1.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 1.1.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Passaggio 1.1.3.1
Sostituisci nel polinomio.
Passaggio 1.1.3.2
Eleva alla potenza di .
Passaggio 1.1.3.3
Eleva alla potenza di .
Passaggio 1.1.3.4
Moltiplica per .
Passaggio 1.1.3.5
Sottrai da .
Passaggio 1.1.3.6
Eleva alla potenza di .
Passaggio 1.1.3.7
Moltiplica per .
Passaggio 1.1.3.8
Somma e .
Passaggio 1.1.3.9
Eleva alla potenza di .
Passaggio 1.1.3.10
Moltiplica per .
Passaggio 1.1.3.11
Sottrai da .
Passaggio 1.1.3.12
Moltiplica per .
Passaggio 1.1.3.13
Somma e .
Passaggio 1.1.3.14
Sottrai da .
Passaggio 1.1.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 1.1.5
Dividi per .
Passaggio 1.1.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
- | - | + | - | + | - |
Passaggio 1.1.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | - | + | - | + | - |
Passaggio 1.1.5.3
Moltiplica il nuovo quoziente per il divisore.
- | - | + | - | + | - | ||||||||||
+ | - |
Passaggio 1.1.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | - | + | - | + | - | ||||||||||
- | + |
Passaggio 1.1.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- |
Passaggio 1.1.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + |
Passaggio 1.1.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | |||||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + |
Passaggio 1.1.5.8
Moltiplica il nuovo quoziente per il divisore.
- | |||||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
- | + |
Passaggio 1.1.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | |||||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - |
Passaggio 1.1.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | |||||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ |
Passaggio 1.1.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
- | |||||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - |
Passaggio 1.1.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | + | ||||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - |
Passaggio 1.1.5.13
Moltiplica il nuovo quoziente per il divisore.
- | + | ||||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
+ | - |
Passaggio 1.1.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | + | ||||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + |
Passaggio 1.1.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | + | ||||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + | ||||||||||||||
- |
Passaggio 1.1.5.16
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
- | + | ||||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + | ||||||||||||||
- | + |
Passaggio 1.1.5.17
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | + | - | |||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + | ||||||||||||||
- | + |
Passaggio 1.1.5.18
Moltiplica il nuovo quoziente per il divisore.
- | + | - | |||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
- | + |
Passaggio 1.1.5.19
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | + | - | |||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - |
Passaggio 1.1.5.20
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | + | - | |||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ |
Passaggio 1.1.5.21
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
- | + | - | |||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - |
Passaggio 1.1.5.22
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | + | - | + | ||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - |
Passaggio 1.1.5.23
Moltiplica il nuovo quoziente per il divisore.
- | + | - | + | ||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
+ | - |
Passaggio 1.1.5.24
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | + | - | + | ||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + |
Passaggio 1.1.5.25
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | + | - | + | ||||||||||||
- | - | + | - | + | - | ||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + | ||||||||||||||
- | + | ||||||||||||||
+ | - | ||||||||||||||
+ | - | ||||||||||||||
- | + | ||||||||||||||
Passaggio 1.1.5.26
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 1.1.6
Scrivi come insieme di fattori.
Passaggio 1.2
Raggruppa i termini.
Passaggio 1.3
Scomponi da .
Passaggio 1.3.1
Scomponi da .
Passaggio 1.3.2
Scomponi da .
Passaggio 1.3.3
Scomponi da .
Passaggio 1.4
Riscrivi come .
Passaggio 1.5
Sia . Sostituisci tutte le occorrenze di con .
Passaggio 1.6
Scomponi usando il metodo AC.
Passaggio 1.6.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 1.6.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 1.7
Sostituisci tutte le occorrenze di con .
Passaggio 1.8
Scomponi da .
Passaggio 1.8.1
Scomponi da .
Passaggio 1.8.2
Scomponi da .
Passaggio 1.9
Sia . Sostituisci tutte le occorrenze di con .
Passaggio 1.10
Scomponi usando la regola del quadrato perfetto.
Passaggio 1.10.1
Rimetti in ordine i termini.
Passaggio 1.10.2
Riscrivi come .
Passaggio 1.10.3
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
Passaggio 1.10.4
Riscrivi il polinomio.
Passaggio 1.10.5
Scomponi usando la regola del trinomio perfetto al quadrato , dove e .
Passaggio 1.11
Sostituisci tutte le occorrenze di con .
Passaggio 1.11.1
Sostituisci tutte le occorrenze di con .
Passaggio 1.11.2
Rimuovi le parentesi non necessarie.
Passaggio 2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3
Passaggio 3.1
Imposta uguale a .
Passaggio 3.2
Somma a entrambi i lati dell'equazione.
Passaggio 4
Passaggio 4.1
Imposta uguale a .
Passaggio 4.2
Risolvi per .
Passaggio 4.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 4.2.3
Riscrivi come .
Passaggio 4.2.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 4.2.4.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 4.2.4.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 4.2.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 5
Passaggio 5.1
Imposta uguale a .
Passaggio 5.2
Risolvi per .
Passaggio 5.2.1
Poni uguale a .
Passaggio 5.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 6
La soluzione finale è data da tutti i valori che rendono vera.