Inserisci un problema...
Precalcolo Esempi
Passaggio 1
Passaggio 1.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.2
Somma a entrambi i lati dell'equazione.
Passaggio 2
Passaggio 2.1
Semplifica ciascun termine.
Passaggio 2.1.1
Utilizza l'identità a doppio angolo per trasformare in .
Passaggio 2.1.2
Applica la proprietà distributiva.
Passaggio 2.1.3
Moltiplica per .
Passaggio 2.1.4
Moltiplica per .
Passaggio 2.2
Somma e .
Passaggio 3
Passaggio 3.1
Scomponi da .
Passaggio 3.1.1
Scomponi da .
Passaggio 3.1.2
Scomponi da .
Passaggio 3.1.3
Scomponi da .
Passaggio 3.1.4
Scomponi da .
Passaggio 3.1.5
Scomponi da .
Passaggio 3.2
Scomponi.
Passaggio 3.2.1
Scomponi mediante raccoglimento.
Passaggio 3.2.1.1
Riordina i termini.
Passaggio 3.2.1.2
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 3.2.1.2.1
Scomponi da .
Passaggio 3.2.1.2.2
Riscrivi come più .
Passaggio 3.2.1.2.3
Applica la proprietà distributiva.
Passaggio 3.2.1.2.4
Moltiplica per .
Passaggio 3.2.1.3
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 3.2.1.3.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 3.2.1.3.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 3.2.1.4
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 3.2.2
Rimuovi le parentesi non necessarie.
Passaggio 4
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5
Passaggio 5.1
Imposta uguale a .
Passaggio 5.2
Risolvi per .
Passaggio 5.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 5.2.2.1
Dividi per ciascun termine in .
Passaggio 5.2.2.2
Semplifica il lato sinistro.
Passaggio 5.2.2.2.1
Elimina il fattore comune di .
Passaggio 5.2.2.2.1.1
Elimina il fattore comune.
Passaggio 5.2.2.2.1.2
Dividi per .
Passaggio 5.2.2.3
Semplifica il lato destro.
Passaggio 5.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 5.2.3
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 5.2.4
Semplifica il lato destro.
Passaggio 5.2.4.1
Il valore esatto di è .
Passaggio 5.2.5
La funzione coseno è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 5.2.6
Semplifica .
Passaggio 5.2.6.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 5.2.6.2
Riduci le frazioni.
Passaggio 5.2.6.2.1
e .
Passaggio 5.2.6.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 5.2.6.3
Semplifica il numeratore.
Passaggio 5.2.6.3.1
Moltiplica per .
Passaggio 5.2.6.3.2
Sottrai da .
Passaggio 5.2.7
Trova il periodo di .
Passaggio 5.2.7.1
Si può calcolare il periodo della funzione usando .
Passaggio 5.2.7.2
Sostituisci con nella formula per il periodo.
Passaggio 5.2.7.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 5.2.7.4
Dividi per .
Passaggio 5.2.8
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 6
Passaggio 6.1
Imposta uguale a .
Passaggio 6.2
Risolvi per .
Passaggio 6.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 6.2.2
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 6.2.3
Semplifica il lato destro.
Passaggio 6.2.3.1
Il valore esatto di è .
Passaggio 6.2.4
La funzione coseno è negativa nel secondo e nel terzo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel terzo quadrante.
Passaggio 6.2.5
Sottrai da .
Passaggio 6.2.6
Trova il periodo di .
Passaggio 6.2.6.1
Si può calcolare il periodo della funzione usando .
Passaggio 6.2.6.2
Sostituisci con nella formula per il periodo.
Passaggio 6.2.6.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 6.2.6.4
Dividi per .
Passaggio 6.2.7
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 7
La soluzione finale è data da tutti i valori che rendono vera.
, per qualsiasi intero