Precalcolo Esempi

Fattore x^4-x^3-23x^2-3x+90
Passaggio 1
Scomponi usando il teorema delle radici razionali.
Tocca per altri passaggi...
Passaggio 1.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 1.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 1.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Tocca per altri passaggi...
Passaggio 1.3.1
Sostituisci nel polinomio.
Passaggio 1.3.2
Eleva alla potenza di .
Passaggio 1.3.3
Eleva alla potenza di .
Passaggio 1.3.4
Moltiplica per .
Passaggio 1.3.5
Sottrai da .
Passaggio 1.3.6
Eleva alla potenza di .
Passaggio 1.3.7
Moltiplica per .
Passaggio 1.3.8
Sottrai da .
Passaggio 1.3.9
Moltiplica per .
Passaggio 1.3.10
Sottrai da .
Passaggio 1.3.11
Somma e .
Passaggio 1.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 1.5
Dividi per .
Tocca per altri passaggi...
Passaggio 1.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
----+
Passaggio 1.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
----+
Passaggio 1.5.3
Moltiplica il nuovo quoziente per il divisore.
----+
+-
Passaggio 1.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
----+
-+
Passaggio 1.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
----+
-+
+
Passaggio 1.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
----+
-+
+-
Passaggio 1.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+
----+
-+
+-
Passaggio 1.5.8
Moltiplica il nuovo quoziente per il divisore.
+
----+
-+
+-
+-
Passaggio 1.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+
----+
-+
+-
-+
Passaggio 1.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+
----+
-+
+-
-+
-
Passaggio 1.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
+
----+
-+
+-
-+
--
Passaggio 1.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+-
----+
-+
+-
-+
--
Passaggio 1.5.13
Moltiplica il nuovo quoziente per il divisore.
+-
----+
-+
+-
-+
--
-+
Passaggio 1.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+-
----+
-+
+-
-+
--
+-
Passaggio 1.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+-
----+
-+
+-
-+
--
+-
-
Passaggio 1.5.16
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
+-
----+
-+
+-
-+
--
+-
-+
Passaggio 1.5.17
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+--
----+
-+
+-
-+
--
+-
-+
Passaggio 1.5.18
Moltiplica il nuovo quoziente per il divisore.
+--
----+
-+
+-
-+
--
+-
-+
-+
Passaggio 1.5.19
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+--
----+
-+
+-
-+
--
+-
-+
+-
Passaggio 1.5.20
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+--
----+
-+
+-
-+
--
+-
-+
+-
Passaggio 1.5.21
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 1.6
Scrivi come insieme di fattori.
Passaggio 2
Scomponi usando il teorema delle radici razionali.
Tocca per altri passaggi...
Passaggio 2.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 2.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 2.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Tocca per altri passaggi...
Passaggio 2.3.1
Sostituisci nel polinomio.
Passaggio 2.3.2
Eleva alla potenza di .
Passaggio 2.3.3
Eleva alla potenza di .
Passaggio 2.3.4
Somma e .
Passaggio 2.3.5
Moltiplica per .
Passaggio 2.3.6
Somma e .
Passaggio 2.3.7
Sottrai da .
Passaggio 2.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 2.5
Dividi per .
Tocca per altri passaggi...
Passaggio 2.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
++--
Passaggio 2.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
++--
Passaggio 2.5.3
Moltiplica il nuovo quoziente per il divisore.
++--
++
Passaggio 2.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
++--
--
Passaggio 2.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
++--
--
-
Passaggio 2.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
++--
--
--
Passaggio 2.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-
++--
--
--
Passaggio 2.5.8
Moltiplica il nuovo quoziente per il divisore.
-
++--
--
--
--
Passaggio 2.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-
++--
--
--
++
Passaggio 2.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-
++--
--
--
++
-
Passaggio 2.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
-
++--
--
--
++
--
Passaggio 2.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
--
++--
--
--
++
--
Passaggio 2.5.13
Moltiplica il nuovo quoziente per il divisore.
--
++--
--
--
++
--
--
Passaggio 2.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
--
++--
--
--
++
--
++
Passaggio 2.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
--
++--
--
--
++
--
++
Passaggio 2.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 2.6
Scrivi come insieme di fattori.
Passaggio 3
Scomponi usando il metodo AC.
Tocca per altri passaggi...
Passaggio 3.1
Scomponi usando il metodo AC.
Tocca per altri passaggi...
Passaggio 3.1.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 3.1.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 3.2
Rimuovi le parentesi non necessarie.
Passaggio 4
Raccogli gli esponenti.
Tocca per altri passaggi...
Passaggio 4.1
Raccogli gli esponenti.
Tocca per altri passaggi...
Passaggio 4.1.1
Eleva alla potenza di .
Passaggio 4.1.2
Eleva alla potenza di .
Passaggio 4.1.3
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 4.1.4
Somma e .
Passaggio 4.2
Rimuovi le parentesi non necessarie.