Precalcolo Esempi

Trovare le Radici (Zeri) f(x)=x^4-x^3-3x^2+5x-2
Passaggio 1
Imposta uguale a .
Passaggio 2
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.1
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 2.1.1
Raggruppa i termini.
Passaggio 2.1.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.1.2.1
Scomponi da .
Passaggio 2.1.2.2
Scomponi da .
Passaggio 2.1.2.3
Scomponi da .
Passaggio 2.1.3
Scomponi mediante raccoglimento.
Tocca per altri passaggi...
Passaggio 2.1.3.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Tocca per altri passaggi...
Passaggio 2.1.3.1.1
Scomponi da .
Passaggio 2.1.3.1.2
Riscrivi come più .
Passaggio 2.1.3.1.3
Applica la proprietà distributiva.
Passaggio 2.1.3.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Tocca per altri passaggi...
Passaggio 2.1.3.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 2.1.3.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 2.1.3.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 2.1.4
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.1.4.1
Scomponi da .
Passaggio 2.1.4.2
Scomponi da .
Passaggio 2.1.4.3
Scomponi da .
Passaggio 2.1.5
Scomponi.
Tocca per altri passaggi...
Passaggio 2.1.5.1
Riscrivi in una forma fattorizzata.
Tocca per altri passaggi...
Passaggio 2.1.5.1.1
Scomponi usando il teorema delle radici razionali.
Tocca per altri passaggi...
Passaggio 2.1.5.1.1.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 2.1.5.1.1.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 2.1.5.1.1.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Tocca per altri passaggi...
Passaggio 2.1.5.1.1.3.1
Sostituisci nel polinomio.
Passaggio 2.1.5.1.1.3.2
Eleva alla potenza di .
Passaggio 2.1.5.1.1.3.3
Moltiplica per .
Passaggio 2.1.5.1.1.3.4
Sottrai da .
Passaggio 2.1.5.1.1.3.5
Somma e .
Passaggio 2.1.5.1.1.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 2.1.5.1.1.5
Dividi per .
Tocca per altri passaggi...
Passaggio 2.1.5.1.1.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
-+-+
Passaggio 2.1.5.1.1.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-+-+
Passaggio 2.1.5.1.1.5.3
Moltiplica il nuovo quoziente per il divisore.
-+-+
+-
Passaggio 2.1.5.1.1.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-+-+
-+
Passaggio 2.1.5.1.1.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-+-+
-+
+
Passaggio 2.1.5.1.1.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
-+-+
-+
+-
Passaggio 2.1.5.1.1.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+
-+-+
-+
+-
Passaggio 2.1.5.1.1.5.8
Moltiplica il nuovo quoziente per il divisore.
+
-+-+
-+
+-
+-
Passaggio 2.1.5.1.1.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+
-+-+
-+
+-
-+
Passaggio 2.1.5.1.1.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+
-+-+
-+
+-
-+
-
Passaggio 2.1.5.1.1.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
+
-+-+
-+
+-
-+
-+
Passaggio 2.1.5.1.1.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+-
-+-+
-+
+-
-+
-+
Passaggio 2.1.5.1.1.5.13
Moltiplica il nuovo quoziente per il divisore.
+-
-+-+
-+
+-
-+
-+
-+
Passaggio 2.1.5.1.1.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+-
-+-+
-+
+-
-+
-+
+-
Passaggio 2.1.5.1.1.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+-
-+-+
-+
+-
-+
-+
+-
Passaggio 2.1.5.1.1.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 2.1.5.1.1.6
Scrivi come insieme di fattori.
Passaggio 2.1.5.1.2
Scomponi usando il metodo AC.
Tocca per altri passaggi...
Passaggio 2.1.5.1.2.1
Scomponi usando il metodo AC.
Tocca per altri passaggi...
Passaggio 2.1.5.1.2.1.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 2.1.5.1.2.1.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 2.1.5.1.2.2
Rimuovi le parentesi non necessarie.
Passaggio 2.1.5.1.3
Combina i fattori comuni.
Tocca per altri passaggi...
Passaggio 2.1.5.1.3.1
Eleva alla potenza di .
Passaggio 2.1.5.1.3.2
Eleva alla potenza di .
Passaggio 2.1.5.1.3.3
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.1.5.1.3.4
Somma e .
Passaggio 2.1.5.2
Rimuovi le parentesi non necessarie.
Passaggio 2.1.6
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 2.1.6.1
Moltiplica per .
Tocca per altri passaggi...
Passaggio 2.1.6.1.1
Eleva alla potenza di .
Passaggio 2.1.6.1.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.1.6.2
Somma e .
Passaggio 2.2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.3
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 2.3.1
Imposta uguale a .
Passaggio 2.3.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.3.2.1
Poni uguale a .
Passaggio 2.3.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 2.4.1
Imposta uguale a .
Passaggio 2.4.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.5
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3