Precalcolo Esempi

Convertire in Intervallo x^2-1>=1
Passaggio 1
Sposta tutti i termini non contenenti sul lato destro della diseguaglianza.
Tocca per altri passaggi...
Passaggio 1.1
Aggiungi a entrambi i lati della diseguaglianza.
Passaggio 1.2
Somma e .
Passaggio 2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Passaggio 3
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.1
Estrai i termini dal radicale.
Passaggio 4
Scrivi a tratti.
Tocca per altri passaggi...
Passaggio 4.1
Per individuare l'intervallo per la prima parte, trova dove l'interno del valore assoluto è non negativo.
Passaggio 4.2
Nella parte in cui è non negativo, rimuovi il valore assoluto.
Passaggio 4.3
Per individuare l'intervallo per la seconda parte, trova dove l'interno del valore assoluto è negativo.
Passaggio 4.4
Nella parte in cui è negativo, rimuovi il valore assoluto e moltiplica per .
Passaggio 4.5
Scrivi a tratti.
Passaggio 5
Trova l'intersezione di e .
Passaggio 6
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 6.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 6.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 6.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 6.2.2
Dividi per .
Passaggio 6.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.3.1
Sposta quello negativo dal denominatore di .
Passaggio 6.3.2
Riscrivi come .
Passaggio 7
Trova l'unione delle soluzioni.
o
Passaggio 8
Converti la diseguaglianza in notazione a intervalli.
Passaggio 9