Inserisci un problema...
Precalcolo Esempi
Passaggio 1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 3
Nel polinomio, sostituisci le possibili radici una alla volta per trovare le radici effettive. Semplifica per verificare se il valore è ; ciò significa che è una radice.
Passaggio 4
Passaggio 4.1
Semplifica ciascun termine.
Passaggio 4.1.1
Applica la regola del prodotto a .
Passaggio 4.1.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.1.3
Eleva alla potenza di .
Passaggio 4.1.4
Elimina il fattore comune di .
Passaggio 4.1.4.1
Scomponi da .
Passaggio 4.1.4.2
Elimina il fattore comune.
Passaggio 4.1.4.3
Riscrivi l'espressione.
Passaggio 4.1.5
Elimina il fattore comune di .
Passaggio 4.1.5.1
Scomponi da .
Passaggio 4.1.5.2
Elimina il fattore comune.
Passaggio 4.1.5.3
Riscrivi l'espressione.
Passaggio 4.2
Semplifica aggiungendo e sottraendo.
Passaggio 4.2.1
Somma e .
Passaggio 4.2.2
Sottrai da .
Passaggio 5
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può essere utilizzato per trovare le restanti radici.
Passaggio 6
Passaggio 6.1
Inserisci i numeri che rappresentano il divisore e il dividendo in una configurazione da divisione.
Passaggio 6.2
Il primo numero nel dividendo è messo nella prima posizione dell'area risultante (al di sotto della retta orizzontale).
Passaggio 6.3
Moltiplica l'ultima voce nel risultato per il divisore e posiziona il risultato di sotto il termine successivo nel dividendo .
Passaggio 6.4
Somma il prodotto della moltiplicazione il numero del dividendo e scrivi il risultato nella posizione successiva sulla riga del risultato.
Passaggio 6.5
Moltiplica l'ultima voce nel risultato per il divisore e posiziona il risultato di sotto il termine successivo nel dividendo .
Passaggio 6.6
Somma il prodotto della moltiplicazione il numero del dividendo e scrivi il risultato nella posizione successiva sulla riga del risultato.
Passaggio 6.7
Tutti i numeri eccetto l'ultimo diventano i coefficienti del polinomio quoziente. L'ultimo valore nella riga del risultato è il resto.
Passaggio 6.8
Semplifica il polinomio quoziente.
Passaggio 7
Passaggio 7.1
Scomponi da .
Passaggio 7.2
Scomponi da .
Passaggio 7.3
Scomponi da .
Passaggio 8
Passaggio 8.1
Scomponi da .
Passaggio 8.1.1
Scomponi da .
Passaggio 8.1.2
Scomponi da .
Passaggio 8.1.3
Riscrivi come .
Passaggio 8.1.4
Scomponi da .
Passaggio 8.1.5
Scomponi da .
Passaggio 8.2
Scomponi usando la regola del quadrato perfetto.
Passaggio 8.2.1
Riscrivi come .
Passaggio 8.2.2
Riscrivi come .
Passaggio 8.2.3
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
Passaggio 8.2.4
Riscrivi il polinomio.
Passaggio 8.2.5
Scomponi usando la regola del trinomio perfetto al quadrato , dove e .
Passaggio 9
Passaggio 9.1
Dividi per ciascun termine in .
Passaggio 9.2
Semplifica il lato sinistro.
Passaggio 9.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 9.2.2
Dividi per .
Passaggio 9.3
Semplifica il lato destro.
Passaggio 9.3.1
Dividi per .
Passaggio 10
Poni uguale a .
Passaggio 11
Passaggio 11.1
Somma a entrambi i lati dell'equazione.
Passaggio 11.2
Dividi per ciascun termine in e semplifica.
Passaggio 11.2.1
Dividi per ciascun termine in .
Passaggio 11.2.2
Semplifica il lato sinistro.
Passaggio 11.2.2.1
Elimina il fattore comune di .
Passaggio 11.2.2.1.1
Elimina il fattore comune.
Passaggio 11.2.2.1.2
Dividi per .
Passaggio 12