Precalcolo Esempi

Tracciare y=2- logaritmo di x
Passaggio 1
Trova gli asintoti.
Tocca per altri passaggi...
Passaggio 1.1
Trova dove l'espressione è indefinita.
Passaggio 1.2
Poiché con da sinistra e con da destra, allora è un asintoto verticale.
Passaggio 1.3
Ignorando il logaritmo, considera la funzione razionale dove è il grado del numeratore e è il grado del denominatore.
1. Se , l'asse x, , è l'asintoto orizzontale.
2. Se , l'asintoto orizzontale è la linea .
3. Se , non esiste alcun asintoto orizzontale (è presente un asintoto obliquo).
Passaggio 1.4
Non ci sono asintoti orizzontali perché è .
Nessun asintoto orizzontale
Passaggio 1.5
Non sono presenti asintoti obliqui per le funzioni logaritmiche e trigonometriche.
Nessun asintoto obliquo
Passaggio 1.6
Questo è l'insieme di tutti gli asintoti.
Asintoti verticali:
Nessun asintoto orizzontale
Asintoti verticali:
Nessun asintoto orizzontale
Passaggio 2
Trova il punto in corrispondenza di .
Tocca per altri passaggi...
Passaggio 2.1
Sostituisci la variabile con nell'espressione.
Passaggio 2.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 2.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.2.1.1
Il logaritmo in base di è .
Passaggio 2.2.1.2
Moltiplica per .
Passaggio 2.2.2
Somma e .
Passaggio 2.2.3
La risposta finale è .
Passaggio 2.3
Converti in decimale.
Passaggio 3
Trova il punto in corrispondenza di .
Tocca per altri passaggi...
Passaggio 3.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 3.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.2.1.1
Il logaritmo in base di è .
Passaggio 3.2.1.2
Moltiplica per .
Passaggio 3.2.2
Sottrai da .
Passaggio 3.2.3
La risposta finale è .
Passaggio 3.3
Converti in decimale.
Passaggio 4
Trova il punto in corrispondenza di .
Tocca per altri passaggi...
Passaggio 4.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.2
La risposta finale è .
Passaggio 4.3
Converti in decimale.
Passaggio 5
La funzione logaritmo può essere rappresentata graficamente utilizzando l'asintoto verticale in e i punti .
Asintoto verticale:
Passaggio 6