Inserisci un problema...
Precalcolo Esempi
Passaggio 1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 3
Nel polinomio, sostituisci le possibili radici una alla volta per trovare le radici effettive. Semplifica per verificare se il valore è ; ciò significa che è una radice.
Passaggio 4
Passaggio 4.1
Semplifica ciascun termine.
Passaggio 4.1.1
Eleva alla potenza di .
Passaggio 4.1.2
Eleva alla potenza di .
Passaggio 4.1.3
Moltiplica per .
Passaggio 4.1.4
Moltiplica per .
Passaggio 4.2
Semplifica aggiungendo e sottraendo.
Passaggio 4.2.1
Sottrai da .
Passaggio 4.2.2
Somma e .
Passaggio 4.2.3
Sottrai da .
Passaggio 5
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può essere utilizzato per trovare le restanti radici.
Passaggio 6
Passaggio 6.1
Inserisci i numeri che rappresentano il divisore e il dividendo in una configurazione da divisione.
Passaggio 6.2
Il primo numero nel dividendo è messo nella prima posizione dell'area risultante (al di sotto della retta orizzontale).
Passaggio 6.3
Moltiplica l'ultima voce nel risultato per il divisore e posiziona il risultato di sotto il termine successivo nel dividendo .
Passaggio 6.4
Somma il prodotto della moltiplicazione il numero del dividendo e scrivi il risultato nella posizione successiva sulla riga del risultato.
Passaggio 6.5
Moltiplica l'ultima voce nel risultato per il divisore e posiziona il risultato di sotto il termine successivo nel dividendo .
Passaggio 6.6
Somma il prodotto della moltiplicazione il numero del dividendo e scrivi il risultato nella posizione successiva sulla riga del risultato.
Passaggio 6.7
Moltiplica l'ultima voce nel risultato per il divisore e posiziona il risultato di sotto il termine successivo nel dividendo .
Passaggio 6.8
Somma il prodotto della moltiplicazione il numero del dividendo e scrivi il risultato nella posizione successiva sulla riga del risultato.
Passaggio 6.9
Tutti i numeri eccetto l'ultimo diventano i coefficienti del polinomio quoziente. L'ultimo valore nella riga del risultato è il resto.
Passaggio 6.10
Semplifica il polinomio quoziente.
Passaggio 7
Passaggio 7.1
Riscrivi come .
Passaggio 7.2
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
Passaggio 7.3
Riscrivi il polinomio.
Passaggio 7.4
Scomponi usando la regola del trinomio perfetto al quadrato , dove e .
Passaggio 8
Passaggio 8.1
Scomponi usando il teorema delle radici razionali.
Passaggio 8.1.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 8.1.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 8.1.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Passaggio 8.1.3.1
Sostituisci nel polinomio.
Passaggio 8.1.3.2
Eleva alla potenza di .
Passaggio 8.1.3.3
Eleva alla potenza di .
Passaggio 8.1.3.4
Moltiplica per .
Passaggio 8.1.3.5
Sottrai da .
Passaggio 8.1.3.6
Moltiplica per .
Passaggio 8.1.3.7
Somma e .
Passaggio 8.1.3.8
Sottrai da .
Passaggio 8.1.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 8.1.5
Dividi per .
Passaggio 8.1.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
- | - | + | - |
Passaggio 8.1.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | - | + | - |
Passaggio 8.1.5.3
Moltiplica il nuovo quoziente per il divisore.
- | - | + | - | ||||||||
+ | - |
Passaggio 8.1.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | - | + | - | ||||||||
- | + |
Passaggio 8.1.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | - | + | - | ||||||||
- | + | ||||||||||
- |
Passaggio 8.1.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Passaggio 8.1.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Passaggio 8.1.5.8
Moltiplica il nuovo quoziente per il divisore.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
Passaggio 8.1.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
Passaggio 8.1.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ |
Passaggio 8.1.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Passaggio 8.1.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Passaggio 8.1.5.13
Moltiplica il nuovo quoziente per il divisore.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
Passaggio 8.1.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
Passaggio 8.1.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Passaggio 8.1.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 8.1.6
Scrivi come insieme di fattori.
Passaggio 8.2
Scomponi usando la regola del quadrato perfetto.
Passaggio 8.2.1
Riscrivi come .
Passaggio 8.2.2
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
Passaggio 8.2.3
Riscrivi il polinomio.
Passaggio 8.2.4
Scomponi usando la regola del trinomio perfetto al quadrato , dove e .
Passaggio 8.3
Combina i fattori comuni.
Passaggio 8.3.1
Eleva alla potenza di .
Passaggio 8.3.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 8.3.3
Somma e .
Passaggio 9
Poni uguale a .
Passaggio 10
Somma a entrambi i lati dell'equazione.
Passaggio 11