Inserisci un problema...
Precalcolo Esempi
Passaggio 1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 3
Nel polinomio, sostituisci le possibili radici una alla volta per trovare le radici effettive. Semplifica per verificare se il valore è ; ciò significa che è una radice.
Passaggio 4
Passaggio 4.1
Semplifica ciascun termine.
Passaggio 4.1.1
Eleva alla potenza di .
Passaggio 4.1.2
Eleva alla potenza di .
Passaggio 4.1.3
Moltiplica per .
Passaggio 4.1.4
Moltiplica per .
Passaggio 4.2
Semplifica aggiungendo e sottraendo.
Passaggio 4.2.1
Somma e .
Passaggio 4.2.2
Sottrai da .
Passaggio 4.2.3
Sottrai da .
Passaggio 5
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può essere usato per trovare le restanti radici.
Passaggio 6
Passaggio 6.1
Inserisci i numeri che rappresentano il divisore e il dividendo in una configurazione da divisione.
Passaggio 6.2
Il primo numero nel dividendo è messo nella prima posizione dell'area risultante (al di sotto della retta orizzontale).
Passaggio 6.3
Moltiplica l'ultima voce nel risultato per il divisore e posiziona il risultato di sotto il termine successivo nel dividendo .
Passaggio 6.4
Somma il prodotto della moltiplicazione il numero del dividendo e scrivi il risultato nella posizione successiva sulla riga del risultato.
Passaggio 6.5
Moltiplica l'ultima voce nel risultato per il divisore e posiziona il risultato di sotto il termine successivo nel dividendo .
Passaggio 6.6
Somma il prodotto della moltiplicazione il numero del dividendo e scrivi il risultato nella posizione successiva sulla riga del risultato.
Passaggio 6.7
Moltiplica l'ultima voce nel risultato per il divisore e posiziona il risultato di sotto il termine successivo nel dividendo .
Passaggio 6.8
Somma il prodotto della moltiplicazione il numero del dividendo e scrivi il risultato nella posizione successiva sulla riga del risultato.
Passaggio 6.9
Tutti i numeri eccetto l'ultimo diventano i coefficienti del polinomio quoziente. L'ultimo valore nella riga del risultato è il resto.
Passaggio 6.10
Semplifica il polinomio quoziente.
Passaggio 7
Passaggio 7.1
Usa la formula quadratica per trovare le soluzioni.
Passaggio 7.2
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 7.3
Semplifica.
Passaggio 7.3.1
Semplifica il numeratore.
Passaggio 7.3.1.1
Eleva alla potenza di .
Passaggio 7.3.1.2
Moltiplica .
Passaggio 7.3.1.2.1
Moltiplica per .
Passaggio 7.3.1.2.2
Moltiplica per .
Passaggio 7.3.1.3
Somma e .
Passaggio 7.3.2
Moltiplica per .
Passaggio 7.4
Semplifica l'espressione per risolvere per la porzione di .
Passaggio 7.4.1
Semplifica il numeratore.
Passaggio 7.4.1.1
Eleva alla potenza di .
Passaggio 7.4.1.2
Moltiplica .
Passaggio 7.4.1.2.1
Moltiplica per .
Passaggio 7.4.1.2.2
Moltiplica per .
Passaggio 7.4.1.3
Somma e .
Passaggio 7.4.2
Moltiplica per .
Passaggio 7.4.3
Cambia da a .
Passaggio 7.4.4
Riscrivi come .
Passaggio 7.4.5
Scomponi da .
Passaggio 7.4.6
Scomponi da .
Passaggio 7.4.7
Sposta il negativo davanti alla frazione.
Passaggio 7.5
Semplifica l'espressione per risolvere per la porzione di .
Passaggio 7.5.1
Semplifica il numeratore.
Passaggio 7.5.1.1
Eleva alla potenza di .
Passaggio 7.5.1.2
Moltiplica .
Passaggio 7.5.1.2.1
Moltiplica per .
Passaggio 7.5.1.2.2
Moltiplica per .
Passaggio 7.5.1.3
Somma e .
Passaggio 7.5.2
Moltiplica per .
Passaggio 7.5.3
Cambia da a .
Passaggio 7.5.4
Riscrivi come .
Passaggio 7.5.5
Scomponi da .
Passaggio 7.5.6
Scomponi da .
Passaggio 7.5.7
Sposta il negativo davanti alla frazione.
Passaggio 7.6
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 8
Il polinomio può essere scritto come un insieme di fattori lineari.
Passaggio 9
Queste sono le radici (zero) del polinomio .
Passaggio 10
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale:
Passaggio 11