Inserisci un problema...
Precalcolo Esempi
Passaggio 1
Trova dove l'espressione è indefinita.
Passaggio 2
Si hanno asintoti verticali nelle aree di discontinuità infinita.
Nessun asintoto verticale
Passaggio 3
Considera la funzione razionale dove è il grado del numeratore e è il grado del denominatore.
1. Se , l'asse x, , è l'asintoto orizzontale.
2. Se , l'asintoto orizzontale è la retta .
3. Se , non esiste alcun asintoto orizzontale (è presente un asintoto obliquo).
Passaggio 4
Trova e .
Passaggio 5
Poiché , non c'è nessun l'asintoto orizzontale.
Nessun asintoto orizzontale
Passaggio 6
Passaggio 6.1
Elimina il fattore comune di e .
Passaggio 6.1.1
Scomponi da .
Passaggio 6.1.2
Elimina i fattori comuni.
Passaggio 6.1.2.1
Eleva alla potenza di .
Passaggio 6.1.2.2
Scomponi da .
Passaggio 6.1.2.3
Elimina il fattore comune.
Passaggio 6.1.2.4
Riscrivi l'espressione.
Passaggio 6.1.2.5
Dividi per .
Passaggio 6.2
Dato che non risulta alcuna porzione polinomiale dalla divisione di polinomi, non ci sono asintoti obliqui.
Nessun asintoto obliquo
Nessun asintoto obliquo
Passaggio 7
Questo è l'insieme di tutti gli asintoti.
Nessun asintoto verticale
Nessun asintoto orizzontale
Nessun asintoto obliquo
Passaggio 8