Precalcolo Esempi

Solve Using a Matrix by Row Operations 4x+3y+z=7 , x-3y+2z=5 , 11x-2y+3z=10
, ,
Passaggio 1
Write the system as a matrix.
Passaggio 2
Trova la forma ridotta a scala per righe di Echelon.
Tocca per altri passaggi...
Passaggio 2.1
Multiply each element of by to make the entry at a .
Tocca per altri passaggi...
Passaggio 2.1.1
Multiply each element of by to make the entry at a .
Passaggio 2.1.2
Semplifica .
Passaggio 2.2
Perform the row operation to make the entry at a .
Tocca per altri passaggi...
Passaggio 2.2.1
Perform the row operation to make the entry at a .
Passaggio 2.2.2
Semplifica .
Passaggio 2.3
Perform the row operation to make the entry at a .
Tocca per altri passaggi...
Passaggio 2.3.1
Perform the row operation to make the entry at a .
Passaggio 2.3.2
Semplifica .
Passaggio 2.4
Multiply each element of by to make the entry at a .
Tocca per altri passaggi...
Passaggio 2.4.1
Multiply each element of by to make the entry at a .
Passaggio 2.4.2
Semplifica .
Passaggio 2.5
Perform the row operation to make the entry at a .
Tocca per altri passaggi...
Passaggio 2.5.1
Perform the row operation to make the entry at a .
Passaggio 2.5.2
Semplifica .
Passaggio 2.6
Multiply each element of by to make the entry at a .
Tocca per altri passaggi...
Passaggio 2.6.1
Multiply each element of by to make the entry at a .
Passaggio 2.6.2
Semplifica .
Passaggio 2.7
Perform the row operation to make the entry at a .
Tocca per altri passaggi...
Passaggio 2.7.1
Perform the row operation to make the entry at a .
Passaggio 2.7.2
Semplifica .
Passaggio 2.8
Perform the row operation to make the entry at a .
Tocca per altri passaggi...
Passaggio 2.8.1
Perform the row operation to make the entry at a .
Passaggio 2.8.2
Semplifica .
Passaggio 2.9
Perform the row operation to make the entry at a .
Tocca per altri passaggi...
Passaggio 2.9.1
Perform the row operation to make the entry at a .
Passaggio 2.9.2
Semplifica .
Passaggio 3
Use the result matrix to declare the final solution to the system of equations.
Passaggio 4
The solution is the set of ordered pairs that make the system true.