Precalcolo Esempi

求解x 5x^3+7x^2-11x+3=0
Passaggio 1
Scomponi usando il teorema delle radici razionali.
Tocca per altri passaggi...
Passaggio 1.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 1.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 1.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Tocca per altri passaggi...
Passaggio 1.3.1
Sostituisci nel polinomio.
Passaggio 1.3.2
Eleva alla potenza di .
Passaggio 1.3.3
Moltiplica per .
Passaggio 1.3.4
Eleva alla potenza di .
Passaggio 1.3.5
Moltiplica per .
Passaggio 1.3.6
Somma e .
Passaggio 1.3.7
Moltiplica per .
Passaggio 1.3.8
Sottrai da .
Passaggio 1.3.9
Somma e .
Passaggio 1.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 1.5
Dividi per .
Tocca per altri passaggi...
Passaggio 1.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
-+-+
Passaggio 1.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-+-+
Passaggio 1.5.3
Moltiplica il nuovo quoziente per il divisore.
-+-+
+-
Passaggio 1.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-+-+
-+
Passaggio 1.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-+-+
-+
+
Passaggio 1.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
-+-+
-+
+-
Passaggio 1.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+
-+-+
-+
+-
Passaggio 1.5.8
Moltiplica il nuovo quoziente per il divisore.
+
-+-+
-+
+-
+-
Passaggio 1.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+
-+-+
-+
+-
-+
Passaggio 1.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+
-+-+
-+
+-
-+
-
Passaggio 1.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
+
-+-+
-+
+-
-+
-+
Passaggio 1.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+-
-+-+
-+
+-
-+
-+
Passaggio 1.5.13
Moltiplica il nuovo quoziente per il divisore.
+-
-+-+
-+
+-
-+
-+
-+
Passaggio 1.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+-
-+-+
-+
+-
-+
-+
+-
Passaggio 1.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+-
-+-+
-+
+-
-+
-+
+-
Passaggio 1.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 1.6
Scrivi come insieme di fattori.
Passaggio 2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 3.1
Imposta uguale a .
Passaggio 3.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 3.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 3.2.2.1
Dividi per ciascun termine in .
Passaggio 3.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.2.2.1.1
Elimina il fattore comune.
Passaggio 3.2.2.2.1.2
Dividi per .
Passaggio 4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 4.1
Imposta uguale a .
Passaggio 4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 4.2.1
Utilizza la formula quadratica per trovare le soluzioni.
Passaggio 4.2.2
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 4.2.3
Semplifica.
Tocca per altri passaggi...
Passaggio 4.2.3.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 4.2.3.1.1
Eleva alla potenza di .
Passaggio 4.2.3.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 4.2.3.1.2.1
Moltiplica per .
Passaggio 4.2.3.1.2.2
Moltiplica per .
Passaggio 4.2.3.1.3
Somma e .
Passaggio 4.2.3.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 4.2.3.1.4.1
Scomponi da .
Passaggio 4.2.3.1.4.2
Riscrivi come .
Passaggio 4.2.3.1.5
Estrai i termini dal radicale.
Passaggio 4.2.3.2
Moltiplica per .
Passaggio 4.2.3.3
Semplifica .
Passaggio 4.2.4
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 5
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale: