Precalcolo Esempi

Trovare gli Asintoti f(x)=(-2x^4+x^3-2x+1)/(x^3+3x^2)
Passaggio 1
Trova dove l'espressione è indefinita.
Passaggio 2
Poiché con da sinistra e con da destra, allora è un asintoto verticale.
Passaggio 3
Poiché con da sinistra e con da destra, allora è un asintoto verticale.
Passaggio 4
Elenca tutti gli asintoti verticali:
Passaggio 5
Considera la funzione razionale dove è il grado del numeratore e è il grado del denominatore.
1. Se , l'asse x, , è l'asintoto orizzontale.
2. Se , l'asintoto orizzontale è la retta .
3. Se , non esiste alcun asintoto orizzontale (è presente un asintoto obliquo).
Passaggio 6
Trova e .
Passaggio 7
Poiché , non c'è nessun l'asintoto orizzontale.
Nessun asintoto orizzontale
Passaggio 8
Trova l'asintoto obliquo usando la divisione di polinomi.
Tocca per altri passaggi...
Passaggio 8.1
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 8.1.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 8.1.1.1
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Tocca per altri passaggi...
Passaggio 8.1.1.1.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 8.1.1.1.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 8.1.1.2
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 8.1.1.3
Riscrivi come .
Passaggio 8.1.1.4
Poiché entrambi i termini sono dei cubi perfetti, fattorizza usando la formula della somma di cubi, dove e .
Passaggio 8.1.1.5
Semplifica.
Tocca per altri passaggi...
Passaggio 8.1.1.5.1
Moltiplica per .
Passaggio 8.1.1.5.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 8.1.2
Semplifica tramite esclusione.
Tocca per altri passaggi...
Passaggio 8.1.2.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 8.1.2.1.1
Scomponi da .
Passaggio 8.1.2.1.2
Scomponi da .
Passaggio 8.1.2.1.3
Scomponi da .
Passaggio 8.1.2.2
Scomponi da .
Passaggio 8.1.2.3
Riscrivi come .
Passaggio 8.1.2.4
Scomponi da .
Passaggio 8.1.2.5
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 8.1.2.5.1
Riscrivi come .
Passaggio 8.1.2.5.2
Sposta il negativo davanti alla frazione.
Passaggio 8.1.2.5.3
Riordina i fattori in .
Passaggio 8.2
Espandi .
Tocca per altri passaggi...
Passaggio 8.2.1
Nega .
Passaggio 8.2.2
Applica la proprietà distributiva.
Passaggio 8.2.3
Applica la proprietà distributiva.
Passaggio 8.2.4
Applica la proprietà distributiva.
Passaggio 8.2.5
Applica la proprietà distributiva.
Passaggio 8.2.6
Applica la proprietà distributiva.
Passaggio 8.2.7
Applica la proprietà distributiva.
Passaggio 8.2.8
Applica la proprietà distributiva.
Passaggio 8.2.9
Applica la proprietà distributiva.
Passaggio 8.2.10
Applica la proprietà distributiva.
Passaggio 8.2.11
Applica la proprietà distributiva.
Passaggio 8.2.12
Applica la proprietà distributiva.
Passaggio 8.2.13
Applica la proprietà distributiva.
Passaggio 8.2.14
Applica la proprietà distributiva.
Passaggio 8.2.15
Applica la proprietà distributiva.
Passaggio 8.2.16
Applica la proprietà distributiva.
Passaggio 8.2.17
Rimuovi le parentesi.
Passaggio 8.2.18
Rimuovi le parentesi.
Passaggio 8.2.19
Rimuovi le parentesi.
Passaggio 8.2.20
Sposta .
Passaggio 8.2.21
Sposta .
Passaggio 8.2.22
Rimuovi le parentesi.
Passaggio 8.2.23
Sposta .
Passaggio 8.2.24
Sposta .
Passaggio 8.2.25
Rimuovi le parentesi.
Passaggio 8.2.26
Sposta .
Passaggio 8.2.27
Rimuovi le parentesi.
Passaggio 8.2.28
Sposta .
Passaggio 8.2.29
Rimuovi le parentesi.
Passaggio 8.2.30
Sposta .
Passaggio 8.2.31
Rimuovi le parentesi.
Passaggio 8.2.32
Sposta .
Passaggio 8.2.33
Sposta .
Passaggio 8.2.34
Rimuovi le parentesi.
Passaggio 8.2.35
Sposta .
Passaggio 8.2.36
Sposta .
Passaggio 8.2.37
Rimuovi le parentesi.
Passaggio 8.2.38
Moltiplica per .
Passaggio 8.2.39
Eleva alla potenza di .
Passaggio 8.2.40
Eleva alla potenza di .
Passaggio 8.2.41
Usa la regola della potenza per combinare gli esponenti.
Passaggio 8.2.42
Somma e .
Passaggio 8.2.43
Usa la regola della potenza per combinare gli esponenti.
Passaggio 8.2.44
Somma e .
Passaggio 8.2.45
Moltiplica per .
Passaggio 8.2.46
Moltiplica per .
Passaggio 8.2.47
Eleva alla potenza di .
Passaggio 8.2.48
Eleva alla potenza di .
Passaggio 8.2.49
Usa la regola della potenza per combinare gli esponenti.
Passaggio 8.2.50
Somma e .
Passaggio 8.2.51
Eleva alla potenza di .
Passaggio 8.2.52
Usa la regola della potenza per combinare gli esponenti.
Passaggio 8.2.53
Somma e .
Passaggio 8.2.54
Moltiplica per .
Passaggio 8.2.55
Moltiplica per .
Passaggio 8.2.56
Eleva alla potenza di .
Passaggio 8.2.57
Eleva alla potenza di .
Passaggio 8.2.58
Usa la regola della potenza per combinare gli esponenti.
Passaggio 8.2.59
Somma e .
Passaggio 8.2.60
Moltiplica per .
Passaggio 8.2.61
Moltiplica per .
Passaggio 8.2.62
Eleva alla potenza di .
Passaggio 8.2.63
Usa la regola della potenza per combinare gli esponenti.
Passaggio 8.2.64
Somma e .
Passaggio 8.2.65
Moltiplica per .
Passaggio 8.2.66
Moltiplica per .
Passaggio 8.2.67
Moltiplica per .
Passaggio 8.2.68
Eleva alla potenza di .
Passaggio 8.2.69
Eleva alla potenza di .
Passaggio 8.2.70
Usa la regola della potenza per combinare gli esponenti.
Passaggio 8.2.71
Somma e .
Passaggio 8.2.72
Moltiplica per .
Passaggio 8.2.73
Moltiplica per .
Passaggio 8.2.74
Moltiplica per .
Passaggio 8.2.75
Moltiplica per .
Passaggio 8.2.76
Moltiplica per .
Passaggio 8.2.77
Eleva alla potenza di .
Passaggio 8.2.78
Usa la regola della potenza per combinare gli esponenti.
Passaggio 8.2.79
Somma e .
Passaggio 8.2.80
Moltiplica per .
Passaggio 8.2.81
Moltiplica per .
Passaggio 8.2.82
Metti in evidenza il valore negativo.
Passaggio 8.2.83
Eleva alla potenza di .
Passaggio 8.2.84
Eleva alla potenza di .
Passaggio 8.2.85
Usa la regola della potenza per combinare gli esponenti.
Passaggio 8.2.86
Somma e .
Passaggio 8.2.87
Moltiplica per .
Passaggio 8.2.88
Moltiplica per .
Passaggio 8.2.89
Moltiplica per .
Passaggio 8.2.90
Moltiplica per .
Passaggio 8.2.91
Moltiplica per .
Passaggio 8.2.92
Moltiplica per .
Passaggio 8.2.93
Moltiplica per .
Passaggio 8.2.94
Moltiplica per .
Passaggio 8.2.95
Moltiplica per .
Passaggio 8.2.96
Moltiplica per .
Passaggio 8.2.97
Moltiplica per .
Passaggio 8.2.98
Moltiplica per .
Passaggio 8.2.99
Sposta .
Passaggio 8.2.100
Sposta .
Passaggio 8.2.101
Sposta .
Passaggio 8.2.102
Sposta .
Passaggio 8.2.103
Sposta .
Passaggio 8.2.104
Sposta .
Passaggio 8.2.105
Sposta .
Passaggio 8.2.106
Somma e .
Passaggio 8.2.107
Sottrai da .
Passaggio 8.2.108
Somma e .
Passaggio 8.2.109
Sottrai da .
Passaggio 8.2.110
Sottrai da .
Passaggio 8.2.111
Somma e .
Passaggio 8.2.112
Sottrai da .
Passaggio 8.2.113
Somma e .
Passaggio 8.3
Espandi .
Tocca per altri passaggi...
Passaggio 8.3.1
Applica la proprietà distributiva.
Passaggio 8.3.2
Riordina e .
Passaggio 8.3.3
Eleva alla potenza di .
Passaggio 8.3.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 8.3.5
Somma e .
Passaggio 8.4
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
+++-++-+
Passaggio 8.5
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-
+++-++-+
Passaggio 8.6
Moltiplica il nuovo quoziente per il divisore.
-
+++-++-+
--++
Passaggio 8.7
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-
+++-++-+
++--
Passaggio 8.8
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-
+++-++-+
++--
++-
Passaggio 8.9
Abbassa il termine successivo dal dividendo originale nel dividendo attuale.
-
+++-++-+
++--
++-+
Passaggio 8.10
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-+
+++-++-+
++--
++-+
Passaggio 8.11
Moltiplica il nuovo quoziente per il divisore.
-+
+++-++-+
++--
++-+
++++
Passaggio 8.12
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-+
+++-++-+
++--
++-+
----
Passaggio 8.13
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-+
+++-++-+
++--
++-+
----
--+
Passaggio 8.14
La risposta finale è il quoziente più il resto sopra il divisore.
Passaggio 8.15
L'asintoto obliquo è la porzione polinomiale del risultato della divisione in colonna.
Passaggio 9
Questo è l'insieme di tutti gli asintoti.
Asintoti verticali:
Nessun asintoto orizzontale
Asintoti obliqui:
Passaggio 10