Precalcolo Esempi

Trovare gli Asintoti y=((x+3)(x-4)(x+7))/(x-4)
Passaggio 1
Trova dove l'espressione è indefinita.
Passaggio 2
Si hanno asintoti verticali nelle aree di discontinuità infinita.
Nessun asintoto verticale
Passaggio 3
Considera la funzione razionale dove è il grado del numeratore e è il grado del denominatore.
1. Se , l'asse x, , è l'asintoto orizzontale.
2. Se , l'asintoto orizzontale è la retta .
3. Se , non esiste alcun asintoto orizzontale (è presente un asintoto obliquo).
Passaggio 4
Trova e .
Passaggio 5
Poiché , non c'è nessun l'asintoto orizzontale.
Nessun asintoto orizzontale
Passaggio 6
Trova l'asintoto obliquo usando la divisione di polinomi.
Tocca per altri passaggi...
Passaggio 6.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
-+--
Passaggio 6.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-+--
Passaggio 6.3
Moltiplica il nuovo quoziente per il divisore.
-+--
+-
Passaggio 6.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-+--
-+
Passaggio 6.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-+--
-+
+
Passaggio 6.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
-+--
-+
+-
Passaggio 6.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+
-+--
-+
+-
Passaggio 6.8
Moltiplica il nuovo quoziente per il divisore.
+
-+--
-+
+-
+-
Passaggio 6.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+
-+--
-+
+-
-+
Passaggio 6.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+
-+--
-+
+-
-+
+
Passaggio 6.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
+
-+--
-+
+-
-+
+-
Passaggio 6.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
++
-+--
-+
+-
-+
+-
Passaggio 6.13
Moltiplica il nuovo quoziente per il divisore.
++
-+--
-+
+-
-+
+-
+-
Passaggio 6.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
++
-+--
-+
+-
-+
+-
-+
Passaggio 6.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
++
-+--
-+
+-
-+
+-
-+
Passaggio 6.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 6.17
L'asintoto obliquo è la porzione polinomiale del risultato della divisione in colonna.
Passaggio 7
Questo è l'insieme di tutti gli asintoti.
Nessun asintoto verticale
Nessun asintoto orizzontale
Asintoti obliqui:
Passaggio 8