Precalcolo Esempi

Trovare il Dominio ((5y^2)/(1-y^2))÷(1-1/(1-y))
Passaggio 1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 2
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.2.1
Dividi per ciascun termine in .
Passaggio 2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 2.2.2.2
Dividi per .
Passaggio 2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.2.3.1
Dividi per .
Passaggio 2.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 2.4
Qualsiasi radice di è .
Passaggio 2.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 2.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 2.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 2.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 4
Risolvi per .
Tocca per altri passaggi...
Passaggio 4.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 4.2.1
Dividi per ciascun termine in .
Passaggio 4.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 4.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 4.2.2.2
Dividi per .
Passaggio 4.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.2.3.1
Dividi per .
Passaggio 5
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 6
Risolvi per .
Tocca per altri passaggi...
Passaggio 6.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 6.2
Trova il minimo comune denominatore dei termini nell'equazione.
Tocca per altri passaggi...
Passaggio 6.2.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 6.2.2
Rimuovi le parentesi.
Passaggio 6.2.3
Il minimo comune multiplo di uno e qualsiasi espressione è l'espressione.
Passaggio 6.3
Moltiplica per ciascun termine in per eliminare le frazioni.
Tocca per altri passaggi...
Passaggio 6.3.1
Moltiplica ogni termine in per .
Passaggio 6.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 6.3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.3.2.1.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 6.3.2.1.2
Elimina il fattore comune.
Passaggio 6.3.2.1.3
Riscrivi l'espressione.
Passaggio 6.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.3.3.1
Applica la proprietà distributiva.
Passaggio 6.3.3.2
Moltiplica per .
Passaggio 6.3.3.3
Moltiplica .
Tocca per altri passaggi...
Passaggio 6.3.3.3.1
Moltiplica per .
Passaggio 6.3.3.3.2
Moltiplica per .
Passaggio 6.4
Risolvi l'equazione.
Tocca per altri passaggi...
Passaggio 6.4.1
Riscrivi l'equazione come .
Passaggio 6.4.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 6.4.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 6.4.2.2
Somma e .
Passaggio 7
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 8