Precalcolo Esempi

Trovare il Dominio radice quadrata della radice quadrata di x^2-1
Passaggio 1
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 2
Poiché il lato sinistro presenta una potenza pari, è sempre positivo per tutti i numeri reali.
Tutti i numeri reali
Passaggio 3
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 4
Risolvi per .
Tocca per altri passaggi...
Passaggio 4.1
Aggiungi a entrambi i lati della diseguaglianza.
Passaggio 4.2
Per rimuovere il radicale del lato sinistro della diseguaglianza, eleva al quadrato entrambi i lati della diseguaglianza.
Passaggio 4.3
Semplifica ogni lato della diseguaglianza.
Tocca per altri passaggi...
Passaggio 4.3.1
Usa per riscrivere come .
Passaggio 4.3.2
Dividi per .
Passaggio 4.3.3
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 4.3.3.1
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 4.3.3.1.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 4.3.3.1.2
Moltiplica per .
Passaggio 4.3.4
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.3.4.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.4
Risolvi per .
Tocca per altri passaggi...
Passaggio 4.4.1
Trova la radice quadrata specificata di entrambi i lati della diseguaglianza per eliminare l'esponente sul lato sinistro.
Passaggio 4.4.2
Semplifica l'equazione.
Tocca per altri passaggi...
Passaggio 4.4.2.1
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 4.4.2.1.1
Estrai i termini dal radicale.
Passaggio 4.4.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.4.2.2.1
Qualsiasi radice di è .
Passaggio 4.4.3
Scrivi a tratti.
Tocca per altri passaggi...
Passaggio 4.4.3.1
Per individuare l'intervallo per la prima parte, trova dove l'interno del valore assoluto è non negativo.
Passaggio 4.4.3.2
Nella parte in cui è non negativo, rimuovi il valore assoluto.
Passaggio 4.4.3.3
Per individuare l'intervallo per la seconda parte, trova dove l'interno del valore assoluto è negativo.
Passaggio 4.4.3.4
Nella parte in cui è negativo, rimuovi il valore assoluto e moltiplica per .
Passaggio 4.4.3.5
Scrivi a tratti.
Passaggio 4.4.4
Trova l'intersezione di e .
Passaggio 4.4.5
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 4.4.5.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 4.4.5.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 4.4.5.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 4.4.5.2.2
Dividi per .
Passaggio 4.4.5.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 4.4.5.3.1
Dividi per .
Passaggio 4.4.6
Trova l'unione delle soluzioni.
o
o
o
Passaggio 5
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 6