Inserisci un problema...
Precalcolo Esempi
Passaggio 1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 2
Passaggio 2.1
Scomponi usando la regola del quadrato perfetto.
Passaggio 2.1.1
Riscrivi come .
Passaggio 2.1.2
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
Passaggio 2.1.3
Riscrivi il polinomio.
Passaggio 2.1.4
Scomponi usando la regola del trinomio perfetto al quadrato , dove e .
Passaggio 2.2
Poni uguale a .
Passaggio 2.3
Somma a entrambi i lati dell'equazione.
Passaggio 3
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 4
Passaggio 4.1
Scomponi usando il metodo AC.
Passaggio 4.1.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 4.1.2
Scrivi la forma fattorizzata usando questi interi.
Passaggio 4.2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 4.3
Imposta uguale a e risolvi per .
Passaggio 4.3.1
Imposta uguale a .
Passaggio 4.3.2
Somma a entrambi i lati dell'equazione.
Passaggio 4.4
Imposta uguale a e risolvi per .
Passaggio 4.4.1
Imposta uguale a .
Passaggio 4.4.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.5
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 5
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 6
Passaggio 6.1
Poni il numeratore uguale a zero.
Passaggio 6.2
Risolvi l'equazione per .
Passaggio 6.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 6.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 6.2.2.1
Dividi per ciascun termine in .
Passaggio 6.2.2.2
Semplifica il lato sinistro.
Passaggio 6.2.2.2.1
Elimina il fattore comune di .
Passaggio 6.2.2.2.1.1
Elimina il fattore comune.
Passaggio 6.2.2.2.1.2
Dividi per .
Passaggio 6.2.2.3
Semplifica il lato destro.
Passaggio 6.2.2.3.1
Dividi per .
Passaggio 7
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 8