Precalcolo Esempi

Trovare gli Asintoti f(x)=(2x(x+5))/(3(x+5))
Passaggio 1
Trova dove l'espressione è indefinita.
Passaggio 2
Si hanno asintoti verticali nelle aree di discontinuità infinita.
Nessun asintoto verticale
Passaggio 3
Considera la funzione razionale dove è il grado del numeratore e è il grado del denominatore.
1. Se , l'asse x, , è l'asintoto orizzontale.
2. Se , l'asintoto orizzontale è la retta .
3. Se , non esiste alcun asintoto orizzontale (è presente un asintoto obliquo).
Passaggio 4
Trova e .
Passaggio 5
Poiché , non c'è nessun l'asintoto orizzontale.
Nessun asintoto orizzontale
Passaggio 6
Trova l'asintoto obliquo usando la divisione di polinomi.
Tocca per altri passaggi...
Passaggio 6.1
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 6.1.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 6.1.1.1
Scomponi da .
Passaggio 6.1.1.2
Scomponi da .
Passaggio 6.1.1.3
Scomponi da .
Passaggio 6.1.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 6.1.2.1
Scomponi da .
Passaggio 6.1.2.2
Scomponi da .
Passaggio 6.1.2.3
Scomponi da .
Passaggio 6.1.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.1.3.1
Elimina il fattore comune.
Passaggio 6.1.3.2
Riscrivi l'espressione.
Passaggio 6.2
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
+
Passaggio 6.3
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+
Passaggio 6.4
Moltiplica il nuovo quoziente per il divisore.
+
+
Passaggio 6.5
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+
-
Passaggio 6.6
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+
-
Passaggio 6.7
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
+
-
+
Passaggio 6.8
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 6.9
Dato che non risulta alcuna porzione polinomiale dalla divisione di polinomi, non ci sono asintoti obliqui.
Nessun asintoto obliquo
Nessun asintoto obliquo
Passaggio 7
Questo è l'insieme di tutti gli asintoti.
Nessun asintoto verticale
Nessun asintoto orizzontale
Nessun asintoto obliquo
Passaggio 8