Precalcolo Esempi

Trovare gli Asintoti f(x)=(x^3+1)/(x^2+2)
Passaggio 1
Trova dove l'espressione è indefinita.
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 2
Si hanno asintoti verticali nelle aree di discontinuità infinita.
Nessun asintoto verticale
Passaggio 3
Considera la funzione razionale dove è il grado del numeratore e è il grado del denominatore.
1. Se , l'asse x, , è l'asintoto orizzontale.
2. Se , l'asintoto orizzontale è la retta .
3. Se , non esiste alcun asintoto orizzontale (è presente un asintoto obliquo).
Passaggio 4
Trova e .
Passaggio 5
Poiché , non c'è nessun l'asintoto orizzontale.
Nessun asintoto orizzontale
Passaggio 6
Trova l'asintoto obliquo usando la divisione di polinomi.
Tocca per altri passaggi...
Passaggio 6.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 6.1.1
Riscrivi come .
Passaggio 6.1.2
Poiché entrambi i termini sono dei cubi perfetti, fattorizza usando la formula della somma di cubi, dove e .
Passaggio 6.1.3
Semplifica.
Tocca per altri passaggi...
Passaggio 6.1.3.1
Moltiplica per .
Passaggio 6.1.3.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 6.2
Espandi .
Tocca per altri passaggi...
Passaggio 6.2.1
Applica la proprietà distributiva.
Passaggio 6.2.2
Applica la proprietà distributiva.
Passaggio 6.2.3
Applica la proprietà distributiva.
Passaggio 6.2.4
Applica la proprietà distributiva.
Passaggio 6.2.5
Applica la proprietà distributiva.
Passaggio 6.2.6
Rimuovi le parentesi.
Passaggio 6.2.7
Riordina e .
Passaggio 6.2.8
Riordina e .
Passaggio 6.2.9
Rimuovi le parentesi.
Passaggio 6.2.10
Moltiplica per .
Passaggio 6.2.11
Eleva alla potenza di .
Passaggio 6.2.12
Usa la regola della potenza per combinare gli esponenti.
Passaggio 6.2.13
Somma e .
Passaggio 6.2.14
Metti in evidenza il valore negativo.
Passaggio 6.2.15
Eleva alla potenza di .
Passaggio 6.2.16
Eleva alla potenza di .
Passaggio 6.2.17
Usa la regola della potenza per combinare gli esponenti.
Passaggio 6.2.18
Somma e .
Passaggio 6.2.19
Moltiplica per .
Passaggio 6.2.20
Moltiplica per .
Passaggio 6.2.21
Moltiplica per .
Passaggio 6.2.22
Moltiplica per .
Passaggio 6.2.23
Sposta .
Passaggio 6.2.24
Sposta .
Passaggio 6.2.25
Sottrai da .
Passaggio 6.2.26
Somma e .
Passaggio 6.2.27
Sottrai da .
Passaggio 6.2.28
Somma e .
Passaggio 6.3
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
+++++
Passaggio 6.4
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+++++
Passaggio 6.5
Moltiplica il nuovo quoziente per il divisore.
+++++
+++
Passaggio 6.6
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+++++
---
Passaggio 6.7
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+++++
---
-
Passaggio 6.8
Abbassa il termine successivo dal dividendo originale nel dividendo attuale.
+++++
---
-+
Passaggio 6.9
La risposta finale è il quoziente più il resto sopra il divisore.
Passaggio 6.10
L'asintoto obliquo è la porzione polinomiale del risultato della divisione in colonna.
Passaggio 7
Questo è l'insieme di tutti gli asintoti.
Nessun asintoto verticale
Nessun asintoto orizzontale
Asintoti obliqui:
Passaggio 8