Precalcolo Esempi

Trovare gli Asintoti f(x)=(x^2-4x-5)/(4x+4)
Passaggio 1
Trova dove l'espressione è indefinita.
Passaggio 2
Si hanno asintoti verticali nelle aree di discontinuità infinita.
Nessun asintoto verticale
Passaggio 3
Considera la funzione razionale dove è il grado del numeratore e è il grado del denominatore.
1. Se , l'asse x, , è l'asintoto orizzontale.
2. Se , l'asintoto orizzontale è la retta .
3. Se , non esiste alcun asintoto orizzontale (è presente un asintoto obliquo).
Passaggio 4
Trova e .
Passaggio 5
Poiché , non c'è nessun l'asintoto orizzontale.
Nessun asintoto orizzontale
Passaggio 6
Trova l'asintoto obliquo usando la divisione di polinomi.
Tocca per altri passaggi...
Passaggio 6.1
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 6.1.1
Scomponi usando il metodo AC.
Tocca per altri passaggi...
Passaggio 6.1.1.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 6.1.1.2
Scrivi la forma fattorizzata usando questi interi.
Passaggio 6.1.2
Semplifica i termini.
Tocca per altri passaggi...
Passaggio 6.1.2.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 6.1.2.1.1
Scomponi da .
Passaggio 6.1.2.1.2
Scomponi da .
Passaggio 6.1.2.1.3
Scomponi da .
Passaggio 6.1.2.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.1.2.2.1
Elimina il fattore comune.
Passaggio 6.1.2.2.2
Riscrivi l'espressione.
Passaggio 6.2
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
-
Passaggio 6.3
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-
Passaggio 6.4
Moltiplica il nuovo quoziente per il divisore.
-
+
Passaggio 6.5
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-
-
Passaggio 6.6
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-
-
Passaggio 6.7
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
-
-
-
Passaggio 6.8
La risposta finale è il quoziente più il resto sopra il divisore.
Passaggio 6.9
L'asintoto obliquo è la porzione polinomiale del risultato della divisione in colonna.
Passaggio 7
Questo è l'insieme di tutti gli asintoti.
Nessun asintoto verticale
Nessun asintoto orizzontale
Asintoti obliqui:
Passaggio 8