Inserisci un problema...
Preparazione all'algebra Esempi
Passaggio 1
Per rimuovere il radicale del lato sinistro della diseguaglianza, eleva al quadrato entrambi i lati della diseguaglianza.
Passaggio 2
Passaggio 2.1
Usa per riscrivere come .
Passaggio 2.2
Semplifica il lato sinistro.
Passaggio 2.2.1
Semplifica .
Passaggio 2.2.1.1
Moltiplica gli esponenti in .
Passaggio 2.2.1.1.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.2.1.1.2
Elimina il fattore comune di .
Passaggio 2.2.1.1.2.1
Elimina il fattore comune.
Passaggio 2.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 2.2.1.2
Semplifica.
Passaggio 2.3
Semplifica il lato destro.
Passaggio 2.3.1
Eleva alla potenza di .
Passaggio 3
Passaggio 3.1
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 3.2
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Passaggio 4
Utilizza ogni radice per creare gli intervalli di prova.
Passaggio 5
Passaggio 5.1
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 5.1.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 5.1.2
Sostituisci con nella diseguaglianza originale.
Passaggio 5.1.3
Il lato sinistro non è uguale al lato destro, il che significa che l'affermazione è falsa.
False
False
Passaggio 5.2
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 5.2.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 5.2.2
Sostituisci con nella diseguaglianza originale.
Passaggio 5.2.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
True
True
Passaggio 5.3
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 5.3.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 5.3.2
Sostituisci con nella diseguaglianza originale.
Passaggio 5.3.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
True
True
Passaggio 5.4
Confronta gli intervalli per determinare quali soddisfano la diseguaglianza originale.
Falso
Vero
Vero
Falso
Vero
Vero
Passaggio 6
La soluzione è costituita da tutti gli intervalli veri.
o
Passaggio 7
Il risultato può essere mostrato in più forme.
Forma della diseguaglianza:
Notazione degli intervalli:
Passaggio 8