Inserisci un problema...
Preparazione all'algebra Esempi
Passaggio 1
Per dividere un numero per una frazione, moltiplicalo per il suo reciproco.
Passaggio 2
Passaggio 2.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 2.1.1
Scomponi da .
Passaggio 2.1.2
Riscrivi come più .
Passaggio 2.1.3
Applica la proprietà distributiva.
Passaggio 2.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 2.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 2.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 2.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 3
Passaggio 3.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 3.1.1
Scomponi da .
Passaggio 3.1.2
Riscrivi come più .
Passaggio 3.1.3
Applica la proprietà distributiva.
Passaggio 3.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 3.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 3.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 3.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 4
Passaggio 4.1
Elimina il fattore comune.
Passaggio 4.2
Riscrivi l'espressione.
Passaggio 5
Passaggio 5.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 5.1.1
Scomponi da .
Passaggio 5.1.2
Riscrivi come più .
Passaggio 5.1.3
Applica la proprietà distributiva.
Passaggio 5.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 5.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 5.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 5.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 6
Passaggio 6.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 6.1.1
Scomponi da .
Passaggio 6.1.2
Riscrivi come più .
Passaggio 6.1.3
Applica la proprietà distributiva.
Passaggio 6.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 6.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 6.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 6.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 7
Passaggio 7.1
Scomponi da .
Passaggio 7.2
Elimina il fattore comune.
Passaggio 7.3
Riscrivi l'espressione.
Passaggio 8
Passaggio 8.1
Elimina il fattore comune.
Passaggio 8.2
Riscrivi l'espressione.
Passaggio 9
Moltiplica per .