Preparazione all'algebra Esempi

Tracciare f(x)=3tan(6x-24)
Passaggio 1
Trova gli asintoti.
Tocca per altri passaggi...
Passaggio 1.1
Per qualsiasi , gli asintoti verticali si verificano con , dove è un numero intero. Utilizza il periodo di base per , , per trovare gli asintoti verticali per . Imposta l'interno della funzione tangente, , per uguale a per trovare dove gli asintoti verticali si verificano per .
Passaggio 1.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 1.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.2.2.1
Dividi per ciascun termine in .
Passaggio 1.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.2.2.2.1.1
Elimina il fattore comune.
Passaggio 1.2.2.2.1.2
Dividi per .
Passaggio 1.2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.2.2.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.2.2.3.1.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.2.2.3.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.2.2.3.1.2.1
Moltiplica per .
Passaggio 1.2.2.3.1.2.2
Moltiplica per .
Passaggio 1.2.2.3.1.3
Dividi per .
Passaggio 1.3
Imposta l'interno della funzione tangente pari a .
Passaggio 1.4
Risolvi per .
Tocca per altri passaggi...
Passaggio 1.4.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.4.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.4.2.1
Dividi per ciascun termine in .
Passaggio 1.4.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.4.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.4.2.2.1.1
Elimina il fattore comune.
Passaggio 1.4.2.2.1.2
Dividi per .
Passaggio 1.4.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.4.2.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.4.2.3.1.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.4.2.3.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.4.2.3.1.2.1
Moltiplica per .
Passaggio 1.4.2.3.1.2.2
Moltiplica per .
Passaggio 1.4.2.3.1.3
Dividi per .
Passaggio 1.5
Il periodo di base per si verificherà a , dove e sono asintoti verticali.
Passaggio 1.6
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 1.7
Gli asintoti verticali per si verificano a , e con ogni , dove è un intero.
Passaggio 1.8
La tangente ha solo asintoti verticali.
Nessun asintoto orizzontale
Nessun asintoto obliquo
Asintoti verticali: dove è un intero
Nessun asintoto orizzontale
Nessun asintoto obliquo
Asintoti verticali: dove è un intero
Passaggio 2
Utilizza la forma per trovare le variabili utilizzate per calcolare l'ampiezza, il periodo, lo sfasamento e la traslazione verticale.
Passaggio 3
Poiché il grafico della funzione non ha un valore massimo o minimo, non possono esserci dei valori per l'ampiezza.
Ampiezza: nessuna
Passaggio 4
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 4.1
Si può calcolare il periodo della funzione usando .
Passaggio 4.2
Sostituisci con nella formula per il periodo.
Passaggio 4.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 5
Trova lo sfasamento usando la formula .
Tocca per altri passaggi...
Passaggio 5.1
Si può calcolare lo sfasamento della funzione da .
Sfasamento:
Passaggio 5.2
Sostituisci i valori di e nell'equazione per lo sfasamento.
Sfasamento:
Passaggio 5.3
Dividi per .
Sfasamento:
Sfasamento:
Passaggio 6
Elenca le proprietà della funzione trigonometrica.
Ampiezza: nessuna
Periodo:
Sfasamento: ( a destra)
Traslazione verticale: no
Passaggio 7
Si può rappresentare graficamente la funzione trigonometrica usando l'ampiezza, il periodo, lo sfasamento, la traslazione verticale e i punti.
Asintoti verticali: dove è un intero
Ampiezza: nessuna
Periodo:
Sfasamento: ( a destra)
Traslazione verticale: no
Passaggio 8