Inserisci un problema...
Preparazione all'algebra Esempi
Passaggio 1
Passaggio 1.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 1.2
Il minimo comune multiplo è il numero positivo più piccolo divisibile equamente per tutti i numeri.
1. Elenca i fattori primi di ciascun numero.
2. Moltiplica ciascun fattore, preso una sola volta, con l'esponente più grande.
Passaggio 1.3
Il numero non è un numero primo perché ha un solo divisore positivo, cioè se stesso.
Non è primo
Passaggio 1.4
Poiché non presenta fattori eccetto e .
è un numero primo
Passaggio 1.5
Il numero non è un numero primo perché ha un solo divisore positivo, cioè se stesso.
Non è primo
Passaggio 1.6
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 1.7
Il fattore di è stesso.
si verifica volta.
Passaggio 1.8
Il fattore di è stesso.
si verifica volta.
Passaggio 1.9
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 1.10
Il minimo comune multiplo di alcuni numeri è il numero più piccolo di cui i numeri sono fattori.
Passaggio 2
Passaggio 2.1
Moltiplica ogni termine in per .
Passaggio 2.2
Semplifica il lato sinistro.
Passaggio 2.2.1
Semplifica ciascun termine.
Passaggio 2.2.1.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 2.2.1.2
e .
Passaggio 2.2.1.3
Elimina il fattore comune di .
Passaggio 2.2.1.3.1
Elimina il fattore comune.
Passaggio 2.2.1.3.2
Riscrivi l'espressione.
Passaggio 2.2.1.4
Applica la proprietà distributiva.
Passaggio 2.2.1.5
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 2.2.1.6
Moltiplica per .
Passaggio 2.2.1.7
Semplifica ciascun termine.
Passaggio 2.2.1.7.1
Moltiplica per sommando gli esponenti.
Passaggio 2.2.1.7.1.1
Sposta .
Passaggio 2.2.1.7.1.2
Moltiplica per .
Passaggio 2.2.1.7.2
Moltiplica per .
Passaggio 2.2.1.8
Elimina il fattore comune di .
Passaggio 2.2.1.8.1
Scomponi da .
Passaggio 2.2.1.8.2
Elimina il fattore comune.
Passaggio 2.2.1.8.3
Riscrivi l'espressione.
Passaggio 2.2.1.9
Espandi usando il metodo FOIL.
Passaggio 2.2.1.9.1
Applica la proprietà distributiva.
Passaggio 2.2.1.9.2
Applica la proprietà distributiva.
Passaggio 2.2.1.9.3
Applica la proprietà distributiva.
Passaggio 2.2.1.10
Semplifica e combina i termini simili.
Passaggio 2.2.1.10.1
Semplifica ciascun termine.
Passaggio 2.2.1.10.1.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 2.2.1.10.1.2
Moltiplica per sommando gli esponenti.
Passaggio 2.2.1.10.1.2.1
Sposta .
Passaggio 2.2.1.10.1.2.2
Moltiplica per .
Passaggio 2.2.1.10.1.3
Sposta alla sinistra di .
Passaggio 2.2.1.10.1.4
Moltiplica per .
Passaggio 2.2.1.10.1.5
Moltiplica per .
Passaggio 2.2.1.10.2
Somma e .
Passaggio 2.2.2
Semplifica aggiungendo i termini.
Passaggio 2.2.2.1
Somma e .
Passaggio 2.2.2.2
Somma e .
Passaggio 2.3
Semplifica il lato destro.
Passaggio 2.3.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 2.3.2
Moltiplica .
Passaggio 2.3.2.1
e .
Passaggio 2.3.2.2
Moltiplica per .
Passaggio 2.3.3
Elimina il fattore comune di .
Passaggio 2.3.3.1
Scomponi da .
Passaggio 2.3.3.2
Elimina il fattore comune.
Passaggio 2.3.3.3
Riscrivi l'espressione.
Passaggio 2.3.4
Applica la proprietà distributiva.
Passaggio 2.3.5
Moltiplica per .
Passaggio 3
Passaggio 3.1
Sposta tutti i termini contenenti sul lato sinistro dell'equazione.
Passaggio 3.1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.1.2
Sottrai da .
Passaggio 3.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.3
Sottrai da .
Passaggio 3.4
Scomponi mediante raccoglimento.
Passaggio 3.4.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Passaggio 3.4.1.1
Scomponi da .
Passaggio 3.4.1.2
Riscrivi come più .
Passaggio 3.4.1.3
Applica la proprietà distributiva.
Passaggio 3.4.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Passaggio 3.4.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 3.4.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 3.4.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 3.5
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3.6
Imposta uguale a e risolvi per .
Passaggio 3.6.1
Imposta uguale a .
Passaggio 3.6.2
Risolvi per .
Passaggio 3.6.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 3.6.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 3.6.2.2.1
Dividi per ciascun termine in .
Passaggio 3.6.2.2.2
Semplifica il lato sinistro.
Passaggio 3.6.2.2.2.1
Elimina il fattore comune di .
Passaggio 3.6.2.2.2.1.1
Elimina il fattore comune.
Passaggio 3.6.2.2.2.1.2
Dividi per .
Passaggio 3.7
Imposta uguale a e risolvi per .
Passaggio 3.7.1
Imposta uguale a .
Passaggio 3.7.2
Risolvi per .
Passaggio 3.7.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.7.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 3.7.2.2.1
Dividi per ciascun termine in .
Passaggio 3.7.2.2.2
Semplifica il lato sinistro.
Passaggio 3.7.2.2.2.1
Elimina il fattore comune di .
Passaggio 3.7.2.2.2.1.1
Elimina il fattore comune.
Passaggio 3.7.2.2.2.1.2
Dividi per .
Passaggio 3.7.2.2.3
Semplifica il lato destro.
Passaggio 3.7.2.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 3.8
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 4
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale:
Forma numero misto: