Inserisci un problema...
Algebra lineare Esempi
[100110111]y=[123321]⎡⎢⎣100110111⎤⎥⎦y=⎡⎢⎣123321⎤⎥⎦
Passaggio 1
Passaggio 1.1
Riscrivi.
|100110111|∣∣
∣∣100110111∣∣
∣∣
Passaggio 1.2
Find the determinant.
Passaggio 1.2.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Passaggio 1.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Passaggio 1.2.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Passaggio 1.2.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|1011|∣∣∣1011∣∣∣
Passaggio 1.2.1.4
Multiply element a11a11 by its cofactor.
1|1011|1∣∣∣1011∣∣∣
Passaggio 1.2.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1011|∣∣∣1011∣∣∣
Passaggio 1.2.1.6
Multiply element a12a12 by its cofactor.
0|1011|0∣∣∣1011∣∣∣
Passaggio 1.2.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1111|∣∣∣1111∣∣∣
Passaggio 1.2.1.8
Multiply element a13a13 by its cofactor.
0|1111|0∣∣∣1111∣∣∣
Passaggio 1.2.1.9
Add the terms together.
1|1011|+0|1011|+0|1111|1∣∣∣1011∣∣∣+0∣∣∣1011∣∣∣+0∣∣∣1111∣∣∣
1|1011|+0|1011|+0|1111|1∣∣∣1011∣∣∣+0∣∣∣1011∣∣∣+0∣∣∣1111∣∣∣
Passaggio 1.2.2
Moltiplica 00 per |1011|∣∣∣1011∣∣∣.
1|1011|+0+0|1111|1∣∣∣1011∣∣∣+0+0∣∣∣1111∣∣∣
Passaggio 1.2.3
Moltiplica 00 per |1111|∣∣∣1111∣∣∣.
1|1011|+0+01∣∣∣1011∣∣∣+0+0
Passaggio 1.2.4
Calcola |1011|∣∣∣1011∣∣∣.
Passaggio 1.2.4.1
È possibile trovare il determinante di una matrice 2×22×2 usando la formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1(1⋅1-1⋅0)+0+01(1⋅1−1⋅0)+0+0
Passaggio 1.2.4.2
Semplifica il determinante.
Passaggio 1.2.4.2.1
Moltiplica 11 per 11.
1(1-1⋅0)+0+01(1−1⋅0)+0+0
Passaggio 1.2.4.2.2
Sottrai 00 da 11.
1⋅1+0+01⋅1+0+0
1⋅1+0+01⋅1+0+0
1⋅1+0+01⋅1+0+0
Passaggio 1.2.5
Semplifica il determinante.
Passaggio 1.2.5.1
Moltiplica 11 per 11.
1+0+01+0+0
Passaggio 1.2.5.2
Somma 11 e 00.
1+01+0
Passaggio 1.2.5.3
Somma 11 e 00.
11
11
11
Passaggio 1.3
Since the determinant is non-zero, the inverse exists.
Passaggio 1.4
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[100100110010111001]⎡⎢⎣100100110010111001⎤⎥⎦
Passaggio 1.5
Trova la forma ridotta a scala per righe di Echelon.
Passaggio 1.5.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
Passaggio 1.5.1.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
[1001001-11-00-00-11-00-0111001]⎡⎢⎣1001001−11−00−00−11−00−0111001⎤⎥⎦
Passaggio 1.5.1.2
Semplifica R2R2.
[100100010-110111001]⎡⎢⎣100100010−110111001⎤⎥⎦
[100100010-110111001]⎡⎢⎣100100010−110111001⎤⎥⎦
Passaggio 1.5.2
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
Passaggio 1.5.2.1
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
[100100010-1101-11-01-00-10-01-0]⎡⎢⎣100100010−1101−11−01−00−10−01−0⎤⎥⎦
Passaggio 1.5.2.2
Semplifica R3R3.
[100100010-110011-101]⎡⎢⎣100100010−110011−101⎤⎥⎦
[100100010-110011-101]⎡⎢⎣100100010−110011−101⎤⎥⎦
Passaggio 1.5.3
Perform the row operation R3=R3-R2R3=R3−R2 to make the entry at 3,23,2 a 00.
Passaggio 1.5.3.1
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
[100100010-1100-01-11-0-1+10-11-0]
Passaggio 1.5.3.2
Semplifica R3.
[100100010-1100010-11]
[100100010-1100010-11]
[100100010-1100010-11]
Passaggio 1.6
The right half of the reduced row echelon form is the inverse.
[100-1100-11]
[100-1100-11]
Passaggio 2
Multiply both sides by the inverse of [100110111].
[100-1100-11][100110111]y=[100-1100-11][123321]
Passaggio 3
Passaggio 3.1
Moltiplica [100-1100-11][100110111].
Passaggio 3.1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×3.
Passaggio 3.1.2
Moltiplica ogni riga nella prima matrice per ogni colonna nella seconda matrice.
[1⋅1+0⋅1+0⋅11⋅0+0⋅1+0⋅11⋅0+0⋅0+0⋅1-1⋅1+1⋅1+0⋅1-0+1⋅1+0⋅1-0+1⋅0+0⋅10⋅1-1⋅1+1⋅10⋅0-1⋅1+1⋅10⋅0-0+1⋅1]y=[100-1100-11][123321]
Passaggio 3.1.3
Semplifica ogni elemento della matrice moltiplicando tutte le espressioni.
[100010001]y=[100-1100-11][123321]
[100010001]y=[100-1100-11][123321]
Passaggio 3.2
Multiplying the identity matrix by any matrix A is the matrix A itself.
y=[100-1100-11][123321]
Passaggio 3.3
Moltiplica [100-1100-11][123321].
Passaggio 3.3.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×2.
Passaggio 3.3.2
Moltiplica ogni riga nella prima matrice per ogni colonna nella seconda matrice.
y=[1⋅1+0⋅3+0⋅21⋅2+0⋅3+0⋅1-1⋅1+1⋅3+0⋅2-1⋅2+1⋅3+0⋅10⋅1-1⋅3+1⋅20⋅2-1⋅3+1⋅1]
Passaggio 3.3.3
Semplifica ogni elemento della matrice moltiplicando tutte le espressioni.
y=[1221-1-2]
y=[1221-1-2]
y=[1221-1-2]