Inserisci un problema...
Algebra lineare Esempi
25x+30y+30z=147525x+30y+30z=1475 , 50x+30y+20z=99050x+30y+20z=990 , 75x+30y+20z=81075x+30y+20z=810
Passaggio 1
Trova AX=BAX=B dal sistema di equazioni.
[253030503020753020]⋅[xyz]=[1475990810]⎡⎢⎣253030503020753020⎤⎥⎦⋅⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣1475990810⎤⎥⎦
Passaggio 2
Passaggio 2.1
Find the determinant.
Passaggio 2.1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Passaggio 2.1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Passaggio 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Passaggio 2.1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|30203020|∣∣∣30203020∣∣∣
Passaggio 2.1.1.4
Multiply element a11a11 by its cofactor.
25|30203020|25∣∣∣30203020∣∣∣
Passaggio 2.1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|50207520|∣∣∣50207520∣∣∣
Passaggio 2.1.1.6
Multiply element a12a12 by its cofactor.
-30|50207520|−30∣∣∣50207520∣∣∣
Passaggio 2.1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|50307530|∣∣∣50307530∣∣∣
Passaggio 2.1.1.8
Multiply element a13a13 by its cofactor.
30|50307530|30∣∣∣50307530∣∣∣
Passaggio 2.1.1.9
Add the terms together.
25|30203020|-30|50207520|+30|50307530|25∣∣∣30203020∣∣∣−30∣∣∣50207520∣∣∣+30∣∣∣50307530∣∣∣
25|30203020|-30|50207520|+30|50307530|25∣∣∣30203020∣∣∣−30∣∣∣50207520∣∣∣+30∣∣∣50307530∣∣∣
Passaggio 2.1.2
Calcola |30203020|∣∣∣30203020∣∣∣.
Passaggio 2.1.2.1
È possibile trovare il determinante di una matrice 2×22×2 usando la formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
25(30⋅20-30⋅20)-30|50207520|+30|50307530|25(30⋅20−30⋅20)−30∣∣∣50207520∣∣∣+30∣∣∣50307530∣∣∣
Passaggio 2.1.2.2
Semplifica il determinante.
Passaggio 2.1.2.2.1
Semplifica ciascun termine.
Passaggio 2.1.2.2.1.1
Moltiplica 3030 per 2020.
25(600-30⋅20)-30|50207520|+30|50307530|25(600−30⋅20)−30∣∣∣50207520∣∣∣+30∣∣∣50307530∣∣∣
Passaggio 2.1.2.2.1.2
Moltiplica -30−30 per 2020.
25(600-600)-30|50207520|+30|50307530|25(600−600)−30∣∣∣50207520∣∣∣+30∣∣∣50307530∣∣∣
25(600-600)-30|50207520|+30|50307530|25(600−600)−30∣∣∣50207520∣∣∣+30∣∣∣50307530∣∣∣
Passaggio 2.1.2.2.2
Sottrai 600600 da 600600.
25⋅0-30|50207520|+30|50307530|25⋅0−30∣∣∣50207520∣∣∣+30∣∣∣50307530∣∣∣
25⋅0-30|50207520|+30|50307530|25⋅0−30∣∣∣50207520∣∣∣+30∣∣∣50307530∣∣∣
25⋅0-30|50207520|+30|50307530|25⋅0−30∣∣∣50207520∣∣∣+30∣∣∣50307530∣∣∣
Passaggio 2.1.3
Calcola |50207520|∣∣∣50207520∣∣∣.
Passaggio 2.1.3.1
È possibile trovare il determinante di una matrice 2×22×2 usando la formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
25⋅0-30(50⋅20-75⋅20)+30|50307530|25⋅0−30(50⋅20−75⋅20)+30∣∣∣50307530∣∣∣
Passaggio 2.1.3.2
Semplifica il determinante.
Passaggio 2.1.3.2.1
Semplifica ciascun termine.
Passaggio 2.1.3.2.1.1
Moltiplica 5050 per 2020.
25⋅0-30(1000-75⋅20)+30|50307530|25⋅0−30(1000−75⋅20)+30∣∣∣50307530∣∣∣
Passaggio 2.1.3.2.1.2
Moltiplica -75−75 per 2020.
25⋅0-30(1000-1500)+30|50307530|25⋅0−30(1000−1500)+30∣∣∣50307530∣∣∣
25⋅0-30(1000-1500)+30|50307530|25⋅0−30(1000−1500)+30∣∣∣50307530∣∣∣
Passaggio 2.1.3.2.2
Sottrai 15001500 da 10001000.
25⋅0-30⋅-500+30|50307530|25⋅0−30⋅−500+30∣∣∣50307530∣∣∣
25⋅0-30⋅-500+30|50307530|25⋅0−30⋅−500+30∣∣∣50307530∣∣∣
25⋅0-30⋅-500+30|50307530|25⋅0−30⋅−500+30∣∣∣50307530∣∣∣
Passaggio 2.1.4
Calcola |50307530|∣∣∣50307530∣∣∣.
Passaggio 2.1.4.1
È possibile trovare il determinante di una matrice 2×22×2 usando la formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
25⋅0-30⋅-500+30(50⋅30-75⋅30)25⋅0−30⋅−500+30(50⋅30−75⋅30)
Passaggio 2.1.4.2
Semplifica il determinante.
Passaggio 2.1.4.2.1
Semplifica ciascun termine.
Passaggio 2.1.4.2.1.1
Moltiplica 5050 per 3030.
25⋅0-30⋅-500+30(1500-75⋅30)25⋅0−30⋅−500+30(1500−75⋅30)
Passaggio 2.1.4.2.1.2
Moltiplica -75−75 per 3030.
25⋅0-30⋅-500+30(1500-2250)25⋅0−30⋅−500+30(1500−2250)
25⋅0-30⋅-500+30(1500-2250)25⋅0−30⋅−500+30(1500−2250)
Passaggio 2.1.4.2.2
Sottrai 22502250 da 15001500.
25⋅0-30⋅-500+30⋅-75025⋅0−30⋅−500+30⋅−750
25⋅0-30⋅-500+30⋅-75025⋅0−30⋅−500+30⋅−750
25⋅0-30⋅-500+30⋅-75025⋅0−30⋅−500+30⋅−750
Passaggio 2.1.5
Semplifica il determinante.
Passaggio 2.1.5.1
Semplifica ciascun termine.
Passaggio 2.1.5.1.1
Moltiplica 2525 per 00.
0-30⋅-500+30⋅-7500−30⋅−500+30⋅−750
Passaggio 2.1.5.1.2
Moltiplica -30−30 per -500−500.
0+15000+30⋅-7500+15000+30⋅−750
Passaggio 2.1.5.1.3
Moltiplica 3030 per -750−750.
0+15000-225000+15000−22500
0+15000-225000+15000−22500
Passaggio 2.1.5.2
Somma 00 e 1500015000.
15000-2250015000−22500
Passaggio 2.1.5.3
Sottrai 2250022500 da 1500015000.
-7500−7500
-7500−7500
-7500−7500
Passaggio 2.2
Since the determinant is non-zero, the inverse exists.
Passaggio 2.3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[253030100503020010753020001]⎡⎢⎣253030100503020010753020001⎤⎥⎦
Passaggio 2.4
Trova la forma ridotta a scala per righe di Echelon.
Passaggio 2.4.1
Multiply each element of R1R1 by 125125 to make the entry at 1,11,1 a 11.
Passaggio 2.4.1.1
Multiply each element of R1R1 by 125125 to make the entry at 1,11,1 a 11.
[252530253025125025025503020010753020001]⎡⎢
⎢⎣252530253025125025025503020010753020001⎤⎥
⎥⎦
Passaggio 2.4.1.2
Semplifica R1.
[1656512500503020010753020001]
[1656512500503020010753020001]
Passaggio 2.4.2
Perform the row operation R2=R2-50R1 to make the entry at 2,1 a 0.
Passaggio 2.4.2.1
Perform the row operation R2=R2-50R1 to make the entry at 2,1 a 0.
[165651250050-50⋅130-50(65)20-50(65)0-50(125)1-50⋅00-50⋅0753020001]
Passaggio 2.4.2.2
Semplifica R2.
[16565125000-30-40-210753020001]
[16565125000-30-40-210753020001]
Passaggio 2.4.3
Perform the row operation R3=R3-75R1 to make the entry at 3,1 a 0.
Passaggio 2.4.3.1
Perform the row operation R3=R3-75R1 to make the entry at 3,1 a 0.
[16565125000-30-40-21075-75⋅130-75(65)20-75(65)0-75(125)0-75⋅01-75⋅0]
Passaggio 2.4.3.2
Semplifica R3.
[16565125000-30-40-2100-60-70-301]
[16565125000-30-40-2100-60-70-301]
Passaggio 2.4.4
Multiply each element of R2 by -130 to make the entry at 2,2 a 1.
Passaggio 2.4.4.1
Multiply each element of R2 by -130 to make the entry at 2,2 a 1.
[1656512500-130⋅0-130⋅-30-130⋅-40-130⋅-2-130⋅1-130⋅00-60-70-301]
Passaggio 2.4.4.2
Semplifica R2.
[16565125000143115-13000-60-70-301]
[16565125000143115-13000-60-70-301]
Passaggio 2.4.5
Perform the row operation R3=R3+60R2 to make the entry at 3,2 a 0.
Passaggio 2.4.5.1
Perform the row operation R3=R3+60R2 to make the entry at 3,2 a 0.
[16565125000143115-13000+60⋅0-60+60⋅1-70+60(43)-3+60(115)0+60(-130)1+60⋅0]
Passaggio 2.4.5.2
Semplifica R3.
[16565125000143115-130000101-21]
[16565125000143115-130000101-21]
Passaggio 2.4.6
Multiply each element of R3 by 110 to make the entry at 3,3 a 1.
Passaggio 2.4.6.1
Multiply each element of R3 by 110 to make the entry at 3,3 a 1.
[16565125000143115-13000100101010110-210110]
Passaggio 2.4.6.2
Semplifica R3.
[16565125000143115-1300001110-15110]
[16565125000143115-1300001110-15110]
Passaggio 2.4.7
Perform the row operation R2=R2-43R3 to make the entry at 2,3 a 0.
Passaggio 2.4.7.1
Perform the row operation R2=R2-43R3 to make the entry at 2,3 a 0.
[16565125000-43⋅01-43⋅043-43⋅1115-43⋅110-130-43(-15)0-43⋅110001110-15110]
Passaggio 2.4.7.2
Semplifica R2.
[1656512500010-115730-215001110-15110]
[1656512500010-115730-215001110-15110]
Passaggio 2.4.8
Perform the row operation R1=R1-65R3 to make the entry at 1,3 a 0.
Passaggio 2.4.8.1
Perform the row operation R1=R1-65R3 to make the entry at 1,3 a 0.
[1-65⋅065-65⋅065-65⋅1125-65⋅1100-65(-15)0-65⋅110010-115730-215001110-15110]
Passaggio 2.4.8.2
Semplifica R1.
[1650-225625-325010-115730-215001110-15110]
[1650-225625-325010-115730-215001110-15110]
Passaggio 2.4.9
Perform the row operation R1=R1-65R2 to make the entry at 1,2 a 0.
Passaggio 2.4.9.1
Perform the row operation R1=R1-65R2 to make the entry at 1,2 a 0.
[1-65⋅065-65⋅10-65⋅0-225-65(-115)625-65⋅730-325-65(-215)010-115730-215001110-15110]
Passaggio 2.4.9.2
Semplifica R1.
[1000-125125010-115730-215001110-15110]
[1000-125125010-115730-215001110-15110]
[1000-125125010-115730-215001110-15110]
Passaggio 2.5
The right half of the reduced row echelon form is the inverse.
[0-125125-115730-215110-15110]
[0-125125-115730-215110-15110]
Passaggio 3
Moltiplica a sinistra entrambi i lati dell'equazione della matrice per la matrice inversa.
([0-125125-115730-215110-15110]⋅[253030503020753020])⋅[xyz]=[0-125125-115730-215110-15110]⋅[1475990810]
Passaggio 4
Qualsiasi matrice moltiplicata per il suo inverso è sempre uguale a 1. A⋅A-1=1.
[xyz]=[0-125125-115730-215110-15110]⋅[1475990810]
Passaggio 5
Passaggio 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×1.
Passaggio 5.2
Moltiplica ogni riga nella prima matrice per ogni colonna nella seconda matrice.
[0⋅1475-125⋅990+125⋅810-115⋅1475+730⋅990-215⋅810110⋅1475-15⋅990+110⋅810]
Passaggio 5.3
Semplifica ogni elemento della matrice moltiplicando tutte le espressioni.
[-365743612]
[-365743612]
Passaggio 6
Semplifica il lato destro e sinistro.
[xyz]=[-365743612]
Passaggio 7
Trova la soluzione.
x=-365
y=743
z=612