Algebra lineare Esempi

Trovare l'Inversa [[1,2,3],[2,5,7],[3,7,9]]
[123257379]
Passaggio 1
Find the determinant.
Tocca per altri passaggi...
Passaggio 1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tocca per altri passaggi...
Passaggio 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Passaggio 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Passaggio 1.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|5779|
Passaggio 1.1.4
Multiply element a11 by its cofactor.
1|5779|
Passaggio 1.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2739|
Passaggio 1.1.6
Multiply element a12 by its cofactor.
-2|2739|
Passaggio 1.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2537|
Passaggio 1.1.8
Multiply element a13 by its cofactor.
3|2537|
Passaggio 1.1.9
Add the terms together.
1|5779|-2|2739|+3|2537|
1|5779|-2|2739|+3|2537|
Passaggio 1.2
Calcola |5779|.
Tocca per altri passaggi...
Passaggio 1.2.1
È possibile trovare il determinante di una matrice 2×2 usando la formula |abcd|=ad-cb.
1(59-77)-2|2739|+3|2537|
Passaggio 1.2.2
Semplifica il determinante.
Tocca per altri passaggi...
Passaggio 1.2.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.2.2.1.1
Moltiplica 5 per 9.
1(45-77)-2|2739|+3|2537|
Passaggio 1.2.2.1.2
Moltiplica -7 per 7.
1(45-49)-2|2739|+3|2537|
1(45-49)-2|2739|+3|2537|
Passaggio 1.2.2.2
Sottrai 49 da 45.
1-4-2|2739|+3|2537|
1-4-2|2739|+3|2537|
1-4-2|2739|+3|2537|
Passaggio 1.3
Calcola |2739|.
Tocca per altri passaggi...
Passaggio 1.3.1
È possibile trovare il determinante di una matrice 2×2 usando la formula |abcd|=ad-cb.
1-4-2(29-37)+3|2537|
Passaggio 1.3.2
Semplifica il determinante.
Tocca per altri passaggi...
Passaggio 1.3.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.3.2.1.1
Moltiplica 2 per 9.
1-4-2(18-37)+3|2537|
Passaggio 1.3.2.1.2
Moltiplica -3 per 7.
1-4-2(18-21)+3|2537|
1-4-2(18-21)+3|2537|
Passaggio 1.3.2.2
Sottrai 21 da 18.
1-4-2-3+3|2537|
1-4-2-3+3|2537|
1-4-2-3+3|2537|
Passaggio 1.4
Calcola |2537|.
Tocca per altri passaggi...
Passaggio 1.4.1
È possibile trovare il determinante di una matrice 2×2 usando la formula |abcd|=ad-cb.
1-4-2-3+3(27-35)
Passaggio 1.4.2
Semplifica il determinante.
Tocca per altri passaggi...
Passaggio 1.4.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.4.2.1.1
Moltiplica 2 per 7.
1-4-2-3+3(14-35)
Passaggio 1.4.2.1.2
Moltiplica -3 per 5.
1-4-2-3+3(14-15)
1-4-2-3+3(14-15)
Passaggio 1.4.2.2
Sottrai 15 da 14.
1-4-2-3+3-1
1-4-2-3+3-1
1-4-2-3+3-1
Passaggio 1.5
Semplifica il determinante.
Tocca per altri passaggi...
Passaggio 1.5.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.5.1.1
Moltiplica -4 per 1.
-4-2-3+3-1
Passaggio 1.5.1.2
Moltiplica -2 per -3.
-4+6+3-1
Passaggio 1.5.1.3
Moltiplica 3 per -1.
-4+6-3
-4+6-3
Passaggio 1.5.2
Somma -4 e 6.
2-3
Passaggio 1.5.3
Sottrai 3 da 2.
-1
-1
-1
Passaggio 2
Since the determinant is non-zero, the inverse exists.
Passaggio 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[123100257010379001]
Passaggio 4
Trova la forma ridotta a scala per righe di Echelon.
Tocca per altri passaggi...
Passaggio 4.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
Tocca per altri passaggi...
Passaggio 4.1.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
[1231002-215-227-230-211-200-20379001]
Passaggio 4.1.2
Semplifica R2.
[123100011-210379001]
[123100011-210379001]
Passaggio 4.2
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
Tocca per altri passaggi...
Passaggio 4.2.1
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
[123100011-2103-317-329-330-310-301-30]
Passaggio 4.2.2
Semplifica R3.
[123100011-210010-301]
[123100011-210010-301]
Passaggio 4.3
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
Tocca per altri passaggi...
Passaggio 4.3.1
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
[123100011-2100-01-10-1-3+20-11-0]
Passaggio 4.3.2
Semplifica R3.
[123100011-21000-1-1-11]
[123100011-21000-1-1-11]
Passaggio 4.4
Multiply each element of R3 by -1 to make the entry at 3,3 a 1.
Tocca per altri passaggi...
Passaggio 4.4.1
Multiply each element of R3 by -1 to make the entry at 3,3 a 1.
[123100011-210-0-0--1--1--1-11]
Passaggio 4.4.2
Semplifica R3.
[123100011-21000111-1]
[123100011-21000111-1]
Passaggio 4.5
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
Tocca per altri passaggi...
Passaggio 4.5.1
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
[1231000-01-01-1-2-11-10+100111-1]
Passaggio 4.5.2
Semplifica R2.
[123100010-30100111-1]
[123100010-30100111-1]
Passaggio 4.6
Perform the row operation R1=R1-3R3 to make the entry at 1,3 a 0.
Tocca per altri passaggi...
Passaggio 4.6.1
Perform the row operation R1=R1-3R3 to make the entry at 1,3 a 0.
[1-302-303-311-310-310-3-1010-30100111-1]
Passaggio 4.6.2
Semplifica R1.
[120-2-33010-30100111-1]
[120-2-33010-30100111-1]
Passaggio 4.7
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
Tocca per altri passaggi...
Passaggio 4.7.1
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
[1-202-210-20-2-2-3-3-203-21010-30100111-1]
Passaggio 4.7.2
Semplifica R1.
[1004-31010-30100111-1]
[1004-31010-30100111-1]
[1004-31010-30100111-1]
Passaggio 5
The right half of the reduced row echelon form is the inverse.
[4-31-30111-1]
[123257379]
(
(
)
)
|
|
[
[
]
]
{
{
}
}
A
A
7
7
8
8
9
9
B
B
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]