Matematica discreta Esempi

Trovare il Dominio (2x)/( radice cubica di 3x^2)
Passaggio 1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 2
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.1
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva al cubo entrambi i lati dell'equazione.
Passaggio 2.2
Semplifica ogni lato dell'equazione.
Tocca per altri passaggi...
Passaggio 2.2.1
Usa per riscrivere come .
Passaggio 2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 2.2.2.1.1
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 2.2.2.1.1.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.2.2.1.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.2.2.1.1.2.1
Elimina il fattore comune.
Passaggio 2.2.2.1.1.2.2
Riscrivi l'espressione.
Passaggio 2.2.2.1.2
Semplifica.
Passaggio 2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 2.3
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.3.1
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.3.1.1
Dividi per ciascun termine in .
Passaggio 2.3.1.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.3.1.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.3.1.2.1.1
Elimina il fattore comune.
Passaggio 2.3.1.2.1.2
Dividi per .
Passaggio 2.3.1.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.1.3.1
Dividi per .
Passaggio 2.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 2.3.3
Semplifica .
Tocca per altri passaggi...
Passaggio 2.3.3.1
Riscrivi come .
Passaggio 2.3.3.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 2.3.3.3
Più o meno è .
Passaggio 3
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 4