Inserisci un problema...
Matematica discreta Esempi
2(n-7)2
Passaggio 1
Riscrivi (n-7)2 come (n-7)(n-7).
2((n-7)(n-7))
Passaggio 2
Passaggio 2.1
Applica la proprietà distributiva.
2(n(n-7)-7(n-7))
Passaggio 2.2
Applica la proprietà distributiva.
2(n⋅n+n⋅-7-7(n-7))
Passaggio 2.3
Applica la proprietà distributiva.
2(n⋅n+n⋅-7-7n-7⋅-7)
2(n⋅n+n⋅-7-7n-7⋅-7)
Passaggio 3
Passaggio 3.1
Semplifica ciascun termine.
Passaggio 3.1.1
Moltiplica n per n.
2(n2+n⋅-7-7n-7⋅-7)
Passaggio 3.1.2
Sposta -7 alla sinistra di n.
2(n2-7⋅n-7n-7⋅-7)
Passaggio 3.1.3
Moltiplica -7 per -7.
2(n2-7n-7n+49)
2(n2-7n-7n+49)
Passaggio 3.2
Sottrai 7n da -7n.
2(n2-14n+49)
2(n2-14n+49)
Passaggio 4
Applica la proprietà distributiva.
2n2+2(-14n)+2⋅49
Passaggio 5
Passaggio 5.1
Moltiplica -14 per 2.
2n2-28n+2⋅49
Passaggio 5.2
Moltiplica 2 per 49.
2n2-28n+98
2n2-28n+98
Passaggio 6
Passaggio 6.1
Metti in evidenza il massimo comune divisore di 2 da ciascun termine nel polinomio.
Passaggio 6.1.1
Metti in evidenza il massimo comune divisore di 2 dall'espressione 2n2.
2(n2)-28n+98
Passaggio 6.1.2
Metti in evidenza il massimo comune divisore di 2 dall'espressione -28n.
2(n2)+2(-14n)+98
Passaggio 6.1.3
Metti in evidenza il massimo comune divisore di 2 dall'espressione 98.
2(n2)+2(-14n)+2(49)
2(n2)+2(-14n)+2(49)
Passaggio 6.2
Poiché tutti i termini condividono un fattore comune di 2, può essere estratto da ciascun termine.
2(n2-14n+49)
2(n2-14n+49)
Passaggio 7
Passaggio 7.1
Riscrivi 49 come 72.
2(n2-14n+72)
Passaggio 7.2
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
14n=2⋅n⋅7
Passaggio 7.3
Riscrivi il polinomio.
2(n2-2⋅n⋅7+72)
Passaggio 7.4
Scomponi usando la regola del trinomio perfetto al quadrato a2-2ab+b2=(a-b)2, dove a=n e b=7.
2((n-7)2)
2((n-7)2)