Matematica discreta Esempi

求解x 1/(x-1)-1/(x+1)=1+2/(x^2-1)
Passaggio 1
Scomponi ogni termine.
Tocca per altri passaggi...
Passaggio 1.1
Riscrivi come .
Passaggio 1.2
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza utilizzando la formula della differenza di quadrati, dove e .
Passaggio 2
Trova il minimo comune denominatore dei termini nell'equazione.
Tocca per altri passaggi...
Passaggio 2.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 2.2
Il minimo comune multiplo è il numero positivo più piccolo divisibile equamente per tutti i numeri.
1. Elenca i fattori primi di ciascun numero.
2. Moltiplica ciascun fattore, preso una sola volta, con l'esponente più grande.
Passaggio 2.3
Il numero non è un numero primo perché ha un solo divisore positivo, cioè se stesso.
Non è primo
Passaggio 2.4
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.5
Il fattore di è stesso.
si verifica volta.
Passaggio 2.6
Il fattore di è stesso.
si verifica volta.
Passaggio 2.7
Il fattore di è stesso.
si verifica volta.
Passaggio 2.8
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 3
Moltiplica per ciascun termine in per eliminare le frazioni.
Tocca per altri passaggi...
Passaggio 3.1
Moltiplica ogni termine in per .
Passaggio 3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.2.1.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.1.1
Elimina il fattore comune.
Passaggio 3.2.1.1.2
Riscrivi l'espressione.
Passaggio 3.2.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.1.2.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 3.2.1.2.2
Scomponi da .
Passaggio 3.2.1.2.3
Elimina il fattore comune.
Passaggio 3.2.1.2.4
Riscrivi l'espressione.
Passaggio 3.2.1.3
Applica la proprietà distributiva.
Passaggio 3.2.1.4
Moltiplica per .
Passaggio 3.2.2
Semplifica aggiungendo i termini.
Tocca per altri passaggi...
Passaggio 3.2.2.1
Combina i termini opposti in .
Tocca per altri passaggi...
Passaggio 3.2.2.1.1
Sottrai da .
Passaggio 3.2.2.1.2
Somma e .
Passaggio 3.2.2.2
Somma e .
Passaggio 3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.3.1.1
Moltiplica per .
Passaggio 3.3.1.2
Espandi usando il metodo FOIL.
Tocca per altri passaggi...
Passaggio 3.3.1.2.1
Applica la proprietà distributiva.
Passaggio 3.3.1.2.2
Applica la proprietà distributiva.
Passaggio 3.3.1.2.3
Applica la proprietà distributiva.
Passaggio 3.3.1.3
Combina i termini opposti in .
Tocca per altri passaggi...
Passaggio 3.3.1.3.1
Riordina i fattori nei termini di e .
Passaggio 3.3.1.3.2
Sottrai da .
Passaggio 3.3.1.3.3
Somma e .
Passaggio 3.3.1.4
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.3.1.4.1
Moltiplica per .
Passaggio 3.3.1.4.2
Moltiplica per .
Passaggio 3.3.1.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.3.1.5.1
Scomponi da .
Passaggio 3.3.1.5.2
Elimina il fattore comune.
Passaggio 3.3.1.5.3
Riscrivi l'espressione.
Passaggio 3.3.2
Somma e .
Passaggio 4
Risolvi l'equazione.
Tocca per altri passaggi...
Passaggio 4.1
Riscrivi l'equazione come .
Passaggio 4.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 4.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.2.2
Sottrai da .
Passaggio 4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 4.4
Qualsiasi radice di è .
Passaggio 4.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 4.5.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 4.5.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 4.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 5
Escludi le soluzioni che non rendono vera.