Inserisci un problema...
Matematica discreta Esempi
Passaggio 1
Riscrivi l'equazione come .
Passaggio 2
Passaggio 2.1
Riscrivi come .
Passaggio 2.2
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza utilizzando la formula della differenza di quadrati, dove e .
Passaggio 3
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 4
Passaggio 4.1
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 4.2
Dividi per ciascun termine in e semplifica.
Passaggio 4.2.1
Dividi per ciascun termine in . Quando moltiplichi o dividi entrambi i lati di una diseguaglianza per un valore negativo, inverti il verso della diseguaglianza.
Passaggio 4.2.2
Semplifica il lato sinistro.
Passaggio 4.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 4.2.2.2
Dividi per .
Passaggio 4.2.3
Semplifica il lato destro.
Passaggio 4.2.3.1
Dividi per .
Passaggio 5
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 6
Passaggio 6.1
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 6.2
Imposta uguale a e risolvi per .
Passaggio 6.2.1
Imposta uguale a .
Passaggio 6.2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 6.3
Imposta uguale a e risolvi per .
Passaggio 6.3.1
Imposta uguale a .
Passaggio 6.3.2
Somma a entrambi i lati dell'equazione.
Passaggio 6.4
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6.5
Utilizza ogni radice per creare gli intervalli di prova.
Passaggio 6.6
Scegli un valore di test da ciascun intervallo e sostituiscilo nella diseguaglianza originale per determinare quali intervalli sono soddisfatti dalla diseguaglianza.
Passaggio 6.6.1
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.6.1.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.6.1.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.6.1.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
True
True
Passaggio 6.6.2
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.6.2.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.6.2.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.6.2.3
Il lato sinistro di è minore del lato destro di ; ciò significa che l'affermazione data è falsa.
False
False
Passaggio 6.6.3
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 6.6.3.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 6.6.3.2
Sostituisci con nella diseguaglianza originale.
Passaggio 6.6.3.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
True
True
Passaggio 6.6.4
Confronta gli intervalli per determinare quali soddisfano la diseguaglianza originale.
Vero
Falso
Vero
Vero
Falso
Vero
Passaggio 6.7
La soluzione è costituita da tutti gli intervalli veri.
o
o
Passaggio 7
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 8
L'intervallo è l'insieme di tutti i valori validi. Usa il grafico per trovare l'intervallo.
Nessuna soluzione
Passaggio 9
Determina il dominio e l'intervallo.
Nessuna soluzione
Passaggio 10