Inserisci un problema...
Matematica discreta Esempi
Passaggio 1
Passaggio 1.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Passaggio 1.1.1
Consider the corresponding sign chart.
Passaggio 1.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Passaggio 1.1.3
The minor for is the determinant with row and column deleted.
Passaggio 1.1.4
Multiply element by its cofactor.
Passaggio 1.1.5
The minor for is the determinant with row and column deleted.
Passaggio 1.1.6
Multiply element by its cofactor.
Passaggio 1.1.7
The minor for is the determinant with row and column deleted.
Passaggio 1.1.8
Multiply element by its cofactor.
Passaggio 1.1.9
The minor for is the determinant with row and column deleted.
Passaggio 1.1.10
Multiply element by its cofactor.
Passaggio 1.1.11
Add the terms together.
Passaggio 1.2
Moltiplica per .
Passaggio 1.3
Moltiplica per .
Passaggio 1.4
Moltiplica per .
Passaggio 1.5
Calcola .
Passaggio 1.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Passaggio 1.5.1.1
Consider the corresponding sign chart.
Passaggio 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Passaggio 1.5.1.3
The minor for is the determinant with row and column deleted.
Passaggio 1.5.1.4
Multiply element by its cofactor.
Passaggio 1.5.1.5
The minor for is the determinant with row and column deleted.
Passaggio 1.5.1.6
Multiply element by its cofactor.
Passaggio 1.5.1.7
The minor for is the determinant with row and column deleted.
Passaggio 1.5.1.8
Multiply element by its cofactor.
Passaggio 1.5.1.9
Add the terms together.
Passaggio 1.5.2
Moltiplica per .
Passaggio 1.5.3
Moltiplica per .
Passaggio 1.5.4
Calcola .
Passaggio 1.5.4.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 1.5.4.2
Semplifica il determinante.
Passaggio 1.5.4.2.1
Semplifica ciascun termine.
Passaggio 1.5.4.2.1.1
Moltiplica per .
Passaggio 1.5.4.2.1.2
Moltiplica per .
Passaggio 1.5.4.2.2
Somma e .
Passaggio 1.5.5
Semplifica il determinante.
Passaggio 1.5.5.1
Moltiplica per .
Passaggio 1.5.5.2
Sottrai da .
Passaggio 1.5.5.3
Somma e .
Passaggio 1.6
Semplifica il determinante.
Passaggio 1.6.1
Moltiplica per .
Passaggio 1.6.2
Somma e .
Passaggio 1.6.3
Sottrai da .
Passaggio 1.6.4
Somma e .
Passaggio 2
Since the determinant is non-zero, the inverse exists.
Passaggio 3
Set up a matrix where the left half is the original matrix and the right half is its identity matrix.
Passaggio 4
Passaggio 4.1
Swap with to put a nonzero entry at .
Passaggio 5
The right half of the reduced row echelon form is the inverse.