Inserisci un problema...
Matematica discreta Esempi
3x2-13x+19=a(x-22+b(-2c))3x2−13x+19=a(x−22+b(−2c))
Passaggio 1
Riscrivi l'equazione come a(x-22+b(-2c))=3x2-13x+19a(x−22+b(−2c))=3x2−13x+19.
a(x-22+b(-2c))=3x2-13x+19a(x−22+b(−2c))=3x2−13x+19
Passaggio 2
Passaggio 2.1
Eleva 22 alla potenza di 22.
a(x-1⋅4+b(-2c))=3x2-13x+19a(x−1⋅4+b(−2c))=3x2−13x+19
Passaggio 2.2
Moltiplica -1−1 per 44.
a(x-4+b(-2c))=3x2-13x+19a(x−4+b(−2c))=3x2−13x+19
a(x-4+b(-2c))=3x2-13x+19a(x−4+b(−2c))=3x2−13x+19
Passaggio 3
Passaggio 3.1
Dividi per x-4+b(-2c)x−4+b(−2c) ciascun termine in a(x-4+b(-2c))=3x2-13x+19a(x−4+b(−2c))=3x2−13x+19.
a(x-4+b(-2c))x-4+b(-2c)=3x2x-4+b(-2c)+-13xx-4+b(-2c)+19x-4+b(-2c)a(x−4+b(−2c))x−4+b(−2c)=3x2x−4+b(−2c)+−13xx−4+b(−2c)+19x−4+b(−2c)
Passaggio 3.2
Semplifica il lato sinistro.
Passaggio 3.2.1
Elimina il fattore comune di x-4+b(-2c)x−4+b(−2c).
Passaggio 3.2.1.1
Elimina il fattore comune.
a(x-4+b(-2c))x-4+b(-2c)=3x2x-4+b(-2c)+-13xx-4+b(-2c)+19x-4+b(-2c)
Passaggio 3.2.1.2
Dividi a per 1.
a=3x2x-4+b(-2c)+-13xx-4+b(-2c)+19x-4+b(-2c)
a=3x2x-4+b(-2c)+-13xx-4+b(-2c)+19x-4+b(-2c)
a=3x2x-4+b(-2c)+-13xx-4+b(-2c)+19x-4+b(-2c)
Passaggio 3.3
Semplifica il lato destro.
Passaggio 3.3.1
Semplifica ciascun termine.
Passaggio 3.3.1.1
Riscrivi usando la proprietà commutativa della moltiplicazione.
a=3x2x-4-2bc+-13xx-4+b(-2c)+19x-4+b(-2c)
Passaggio 3.3.1.2
Riscrivi usando la proprietà commutativa della moltiplicazione.
a=3x2x-4-2bc+-13xx-4-2bc+19x-4+b(-2c)
Passaggio 3.3.1.3
Sposta il negativo davanti alla frazione.
a=3x2x-4-2bc-13xx-4-2bc+19x-4+b(-2c)
Passaggio 3.3.1.4
Riscrivi usando la proprietà commutativa della moltiplicazione.
a=3x2x-4-2bc-13xx-4-2bc+19x-4-2bc
a=3x2x-4-2bc-13xx-4-2bc+19x-4-2bc
Passaggio 3.3.2
Riduci in una frazione.
Passaggio 3.3.2.1
Riduci i numeratori su un comune denominatore.
a=3x2-13xx-4-2bc+19x-4-2bc
Passaggio 3.3.2.2
Riduci i numeratori su un comune denominatore.
a=3x2-13x+19x-4-2bc
a=3x2-13x+19x-4-2bc
a=3x2-13x+19x-4-2bc
a=3x2-13x+19x-4-2bc