Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.2
Con un logaritmo che tende a infinito, il valore diventa .
Passaggio 1.3
Il limite all'infinito di un polinomio il cui coefficiente direttivo è più infinito.
Passaggio 1.4
Infinito diviso per infinito è indefinito.
Indefinito
Passaggio 2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3
Passaggio 3.1
Differenzia numeratore e denominatore.
Passaggio 3.2
La derivata di rispetto a è .
Passaggio 3.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 5
Moltiplica per .
Passaggio 6
Poiché il suo numeratore tende a un numero reale, mentre il denominatore è illimitato, la frazione tende a .