Calcolo Esempi

Valutare l'Integrale integrale da 0 a 3 di 1/(9-y^2) rispetto a y
Passaggio 1
Scrivi la frazione usando la scomposizione della frazione parziale.
Tocca per altri passaggi...
Passaggio 1.1
Scomponi la frazione e moltiplica per il comune denominatore.
Tocca per altri passaggi...
Passaggio 1.1.1
Scomponi la frazione.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Riscrivi come .
Passaggio 1.1.1.2
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza utilizzando la formula della differenza di quadrati, dove e .
Passaggio 1.1.2
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 1.1.3
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 1.1.4
Moltiplica ogni frazione nell'equazione per il denominatore dell'espressione originale. In questo caso, il denominatore è .
Passaggio 1.1.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.5.1
Elimina il fattore comune.
Passaggio 1.1.5.2
Riscrivi l'espressione.
Passaggio 1.1.6
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.6.1
Elimina il fattore comune.
Passaggio 1.1.6.2
Riscrivi l'espressione.
Passaggio 1.1.7
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.7.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.7.1.1
Elimina il fattore comune.
Passaggio 1.1.7.1.2
Dividi per .
Passaggio 1.1.7.2
Applica la proprietà distributiva.
Passaggio 1.1.7.3
Sposta alla sinistra di .
Passaggio 1.1.7.4
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 1.1.7.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.7.5.1
Elimina il fattore comune.
Passaggio 1.1.7.5.2
Dividi per .
Passaggio 1.1.7.6
Applica la proprietà distributiva.
Passaggio 1.1.7.7
Sposta alla sinistra di .
Passaggio 1.1.8
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.1.8.1
Sposta .
Passaggio 1.1.8.2
Riordina e .
Passaggio 1.1.8.3
Sposta .
Passaggio 1.1.8.4
Sposta .
Passaggio 1.2
Crea equazioni per le variabili della frazione parziale e usali per impostare un sistema di equazioni.
Tocca per altri passaggi...
Passaggio 1.2.1
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.2
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti dei termini che non contengono . Affinché l'equazione sia uguale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.3
Imposta il sistema di equazioni per trovare i coefficienti delle frazioni parziali.
Passaggio 1.3
Risolvi il sistema di equazioni.
Tocca per altri passaggi...
Passaggio 1.3.1
Risolvi per in .
Tocca per altri passaggi...
Passaggio 1.3.1.1
Riscrivi l'equazione come .
Passaggio 1.3.1.2
Riscrivi come .
Passaggio 1.3.1.3
Somma a entrambi i lati dell'equazione.
Passaggio 1.3.2
Sostituisci tutte le occorrenze di con in ogni equazione.
Tocca per altri passaggi...
Passaggio 1.3.2.1
Sostituisci tutte le occorrenze di in con .
Passaggio 1.3.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.2.2.1
Somma e .
Passaggio 1.3.3
Risolvi per in .
Tocca per altri passaggi...
Passaggio 1.3.3.1
Riscrivi l'equazione come .
Passaggio 1.3.3.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.3.3.2.1
Dividi per ciascun termine in .
Passaggio 1.3.3.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.3.3.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.3.3.2.2.1.1
Elimina il fattore comune.
Passaggio 1.3.3.2.2.1.2
Dividi per .
Passaggio 1.3.4
Sostituisci tutte le occorrenze di con in ogni equazione.
Tocca per altri passaggi...
Passaggio 1.3.4.1
Sostituisci tutte le occorrenze di in con .
Passaggio 1.3.4.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.3.4.2.1
Rimuovi le parentesi.
Passaggio 1.3.5
Elenca tutte le soluzioni.
Passaggio 1.4
Sostituisci ogni coefficiente della frazione parziale in con i valori trovati per e .
Passaggio 1.5
Semplifica.
Tocca per altri passaggi...
Passaggio 1.5.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.5.2
Moltiplica per .
Passaggio 1.5.3
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.5.4
Moltiplica per .
Passaggio 2
Dividi il singolo integrale in più integrali.
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 4.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 4.1.1
Differenzia .
Passaggio 4.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.5
Somma e .
Passaggio 4.2
Sostituisci con il limite inferiore in .
Passaggio 4.3
Somma e .
Passaggio 4.4
Sostituisci con il limite superiore in .
Passaggio 4.5
Somma e .
Passaggio 4.6
I valori trovati per e saranno usati per calcolare l'integrale definito.
Passaggio 4.7
Riscrivi il problema utilizzando , e i nuovi limiti dell'integrazione.
Passaggio 5
L'integrale di rispetto a è .
Passaggio 6
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 7
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 7.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 7.1.1
Riscrivi.
Passaggio 7.1.2
Dividi per .
Passaggio 7.2
Sostituisci con il limite inferiore in .
Passaggio 7.3
Sottrai da .
Passaggio 7.4
Sostituisci con il limite superiore in .
Passaggio 7.5
Semplifica.
Tocca per altri passaggi...
Passaggio 7.5.1
Moltiplica per .
Passaggio 7.5.2
Sottrai da .
Passaggio 7.6
I valori trovati per e saranno usati per calcolare l'integrale definito.
Passaggio 7.7
Riscrivi il problema utilizzando , e i nuovi limiti dell'integrazione.
Passaggio 8
Sposta il negativo davanti alla frazione.
Passaggio 9
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 10
L'integrale di rispetto a è .
Passaggio 11
e .
Passaggio 12
Sostituisci e semplifica.
Tocca per altri passaggi...
Passaggio 12.1
Calcola per e per .
Passaggio 12.2
Calcola per e per .
Passaggio 12.3
Semplifica.
Tocca per altri passaggi...
Passaggio 12.3.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 12.3.2
e .
Passaggio 12.3.3
Riduci i numeratori su un comune denominatore.
Passaggio 12.3.4
e .
Passaggio 12.3.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 12.3.5.1
Elimina il fattore comune.
Passaggio 12.3.5.2
Riscrivi l'espressione.
Passaggio 12.3.6
Moltiplica per .
Passaggio 13
Semplifica.
Tocca per altri passaggi...
Passaggio 13.1
Utilizza la proprietà del quoziente dei logaritmi, .
Passaggio 13.2
Utilizza la proprietà del quoziente dei logaritmi, .
Passaggio 13.3
Utilizza la proprietà del quoziente dei logaritmi, .
Passaggio 13.4
Riscrivi come un prodotto.
Passaggio 13.5
Moltiplica per il reciproco della frazione per dividere per .
Passaggio 13.6
Moltiplica per .
Passaggio 13.7
Moltiplica per .
Passaggio 13.8
Per moltiplicare dei valori assoluti, moltiplica i termini all'interno di ciascun valore assoluto.
Passaggio 13.9
Moltiplica per .
Passaggio 13.10
Per moltiplicare dei valori assoluti, moltiplica i termini all'interno di ciascun valore assoluto.
Passaggio 13.11
Moltiplica per .
Passaggio 14
Semplifica.
Tocca per altri passaggi...
Passaggio 14.1
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 14.2
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 15
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito