Calcolo Esempi

Valutare l'Integrale integrale di x/(x-1) rispetto a x
Passaggio 1
Dividi per .
Tocca per altri passaggi...
Passaggio 1.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
-+
Passaggio 1.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-+
Passaggio 1.3
Moltiplica il nuovo quoziente per il divisore.
-+
+-
Passaggio 1.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-+
-+
Passaggio 1.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-+
-+
+
Passaggio 1.6
La risposta finale è il quoziente più il resto sopra il divisore.
Passaggio 2
Dividi il singolo integrale in più integrali.
Passaggio 3
Applica la regola costante.
Passaggio 4
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 4.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 4.1.1
Differenzia .
Passaggio 4.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.5
Somma e .
Passaggio 4.2
Riscrivi il problema utilizzando e .
Passaggio 5
L'integrale di rispetto a è .
Passaggio 6
Semplifica.
Passaggio 7
Sostituisci tutte le occorrenze di con .