Inserisci un problema...
Calcolo Esempi
Passaggio 1
Sottrai da .
Passaggio 2
Passaggio 2.1
Scomponi la frazione e moltiplica per il comune denominatore.
Passaggio 2.1.1
Scomponi da .
Passaggio 2.1.1.1
Scomponi da .
Passaggio 2.1.1.2
Scomponi da .
Passaggio 2.1.1.3
Scomponi da .
Passaggio 2.1.2
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 2.1.3
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 2.1.4
Moltiplica ogni frazione nell'equazione per il denominatore dell'espressione originale. In questo caso, il denominatore è .
Passaggio 2.1.5
Elimina il fattore comune di .
Passaggio 2.1.5.1
Elimina il fattore comune.
Passaggio 2.1.5.2
Dividi per .
Passaggio 2.1.6
Applica la proprietà distributiva.
Passaggio 2.1.7
Moltiplica per .
Passaggio 2.1.8
Semplifica ciascun termine.
Passaggio 2.1.8.1
Elimina il fattore comune di .
Passaggio 2.1.8.1.1
Elimina il fattore comune.
Passaggio 2.1.8.1.2
Dividi per .
Passaggio 2.1.8.2
Elimina il fattore comune di e .
Passaggio 2.1.8.2.1
Scomponi da .
Passaggio 2.1.8.2.2
Elimina i fattori comuni.
Passaggio 2.1.8.2.2.1
Moltiplica per .
Passaggio 2.1.8.2.2.2
Elimina il fattore comune.
Passaggio 2.1.8.2.2.3
Riscrivi l'espressione.
Passaggio 2.1.8.2.2.4
Dividi per .
Passaggio 2.1.8.3
Applica la proprietà distributiva.
Passaggio 2.1.8.4
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 2.1.8.5
Moltiplica per .
Passaggio 2.1.9
Semplifica l'espressione.
Passaggio 2.1.9.1
Sposta .
Passaggio 2.1.9.2
Riordina e .
Passaggio 2.2
Crea equazioni per le variabili della frazione parziale e usali per impostare un sistema di equazioni.
Passaggio 2.2.1
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 2.2.2
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti dei termini che non contengono . Affinché l'equazione sia uguale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 2.2.3
Imposta il sistema di equazioni per trovare i coefficienti delle frazioni parziali.
Passaggio 2.3
Risolvi il sistema di equazioni.
Passaggio 2.3.1
Risolvi per in .
Passaggio 2.3.1.1
Riscrivi l'equazione come .
Passaggio 2.3.1.2
Dividi per ciascun termine in e semplifica.
Passaggio 2.3.1.2.1
Dividi per ciascun termine in .
Passaggio 2.3.1.2.2
Semplifica il lato sinistro.
Passaggio 2.3.1.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 2.3.1.2.2.2
Dividi per .
Passaggio 2.3.1.2.3
Semplifica il lato destro.
Passaggio 2.3.1.2.3.1
Dividi per .
Passaggio 2.3.2
Sostituisci tutte le occorrenze di con in ogni equazione.
Passaggio 2.3.2.1
Sostituisci tutte le occorrenze di in con .
Passaggio 2.3.2.2
Semplifica il lato sinistro.
Passaggio 2.3.2.2.1
Rimuovi le parentesi.
Passaggio 2.3.3
Risolvi per in .
Passaggio 2.3.3.1
Riscrivi l'equazione come .
Passaggio 2.3.3.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Passaggio 2.3.3.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 2.3.3.2.2
Somma e .
Passaggio 2.3.4
Risolvi il sistema di equazioni.
Passaggio 2.3.5
Elenca tutte le soluzioni.
Passaggio 2.4
Sostituisci ogni coefficiente della frazione parziale in con i valori trovati per e .
Passaggio 2.5
Semplifica.
Passaggio 2.5.1
Dividi per .
Passaggio 2.5.2
Sposta il negativo davanti alla frazione.
Passaggio 2.5.3
Scomponi da .
Passaggio 2.5.4
Riscrivi come .
Passaggio 2.5.5
Scomponi da .
Passaggio 2.5.6
Semplifica l'espressione.
Passaggio 2.5.6.1
Riscrivi come .
Passaggio 2.5.6.2
Sposta il negativo davanti alla frazione.
Passaggio 2.5.6.3
Moltiplica per .
Passaggio 2.5.6.4
Moltiplica per .
Passaggio 2.5.7
Rimuovi lo zero dall'espressione.
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
Passaggio 4.1
Sia . Trova .
Passaggio 4.1.1
Differenzia .
Passaggio 4.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.5
Somma e .
Passaggio 4.2
Riscrivi il problema utilizzando e .
Passaggio 5
L'integrale di rispetto a è .
Passaggio 6
Semplifica.
Passaggio 7
Sostituisci tutte le occorrenze di con .