Inserisci un problema...
Calcolo Esempi
,
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia usando la regola multipla costante.
Passaggio 1.1.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.2
Riscrivi come .
Passaggio 1.1.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.3
Differenzia.
Passaggio 1.1.3.1
Moltiplica per .
Passaggio 1.1.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.5
Semplifica l'espressione.
Passaggio 1.1.3.5.1
Somma e .
Passaggio 1.1.3.5.2
Moltiplica per .
Passaggio 1.1.4
Semplifica.
Passaggio 1.1.4.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 1.1.4.2
Raccogli i termini.
Passaggio 1.1.4.2.1
e .
Passaggio 1.1.4.2.2
Sposta il negativo davanti alla frazione.
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Per determinare se la funzione è continua in o no, trova il dominio di .
Passaggio 2.1.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 2.1.2
Risolvi per .
Passaggio 2.1.2.1
Poni uguale a .
Passaggio 2.1.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.1.3
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Notazione degli intervalli:
Notazione intensiva:
Notazione degli intervalli:
Notazione intensiva:
Passaggio 2.2
è continua su .
La funzione è continua.
La funzione è continua.
Passaggio 3
La funzione è differenziabile su perché la derivata è continua su .
La funzione è differenziabile.
Passaggio 4