Calcolo Esempi

Trovare la Concavità f(x)=3x^4-24x^3+30x^2
Passaggio 1
Find the values where the second derivative is equal to .
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 1.1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.1.2.3
Moltiplica per .
Passaggio 1.1.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.1.3.3
Moltiplica per .
Passaggio 1.1.1.4
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.4.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.1.4.3
Moltiplica per .
Passaggio 1.1.2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.2.3
Moltiplica per .
Passaggio 1.1.2.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.3.3
Moltiplica per .
Passaggio 1.1.2.4
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.4.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.4.3
Moltiplica per .
Passaggio 1.1.3
La derivata seconda di rispetto a è .
Passaggio 1.2
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 1.2.1
Imposta la derivata seconda uguale a .
Passaggio 1.2.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.2.2.1
Scomponi da .
Passaggio 1.2.2.2
Scomponi da .
Passaggio 1.2.2.3
Scomponi da .
Passaggio 1.2.2.4
Scomponi da .
Passaggio 1.2.2.5
Scomponi da .
Passaggio 1.2.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.2.3.1
Dividi per ciascun termine in .
Passaggio 1.2.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.2.3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.2.3.2.1.1
Elimina il fattore comune.
Passaggio 1.2.3.2.1.2
Dividi per .
Passaggio 1.2.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.2.3.3.1
Dividi per .
Passaggio 1.2.4
Utilizza la formula quadratica per trovare le soluzioni.
Passaggio 1.2.5
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 1.2.6
Semplifica.
Tocca per altri passaggi...
Passaggio 1.2.6.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.2.6.1.1
Eleva alla potenza di .
Passaggio 1.2.6.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.2.6.1.2.1
Moltiplica per .
Passaggio 1.2.6.1.2.2
Moltiplica per .
Passaggio 1.2.6.1.3
Sottrai da .
Passaggio 1.2.6.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 1.2.6.1.4.1
Scomponi da .
Passaggio 1.2.6.1.4.2
Riscrivi come .
Passaggio 1.2.6.1.5
Estrai i termini dal radicale.
Passaggio 1.2.6.2
Moltiplica per .
Passaggio 1.2.6.3
Semplifica .
Passaggio 1.2.7
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 1.2.7.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.2.7.1.1
Eleva alla potenza di .
Passaggio 1.2.7.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.2.7.1.2.1
Moltiplica per .
Passaggio 1.2.7.1.2.2
Moltiplica per .
Passaggio 1.2.7.1.3
Sottrai da .
Passaggio 1.2.7.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 1.2.7.1.4.1
Scomponi da .
Passaggio 1.2.7.1.4.2
Riscrivi come .
Passaggio 1.2.7.1.5
Estrai i termini dal radicale.
Passaggio 1.2.7.2
Moltiplica per .
Passaggio 1.2.7.3
Semplifica .
Passaggio 1.2.7.4
Cambia da a .
Passaggio 1.2.8
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 1.2.8.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.2.8.1.1
Eleva alla potenza di .
Passaggio 1.2.8.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.2.8.1.2.1
Moltiplica per .
Passaggio 1.2.8.1.2.2
Moltiplica per .
Passaggio 1.2.8.1.3
Sottrai da .
Passaggio 1.2.8.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 1.2.8.1.4.1
Scomponi da .
Passaggio 1.2.8.1.4.2
Riscrivi come .
Passaggio 1.2.8.1.5
Estrai i termini dal radicale.
Passaggio 1.2.8.2
Moltiplica per .
Passaggio 1.2.8.3
Semplifica .
Passaggio 1.2.8.4
Cambia da a .
Passaggio 1.2.9
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 2
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 3
Crea intervalli attorno ai valori di per cui la derivata seconda è zero o indefinita.
Passaggio 4
Sostituisci qualsiasi numero dell'intervallo nella derivata seconda e calcola per determinare la concavità.
Tocca per altri passaggi...
Passaggio 4.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 4.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.2.1.2
Moltiplica per .
Passaggio 4.2.1.3
Moltiplica per .
Passaggio 4.2.2
Semplifica aggiungendo i numeri.
Tocca per altri passaggi...
Passaggio 4.2.2.1
Somma e .
Passaggio 4.2.2.2
Somma e .
Passaggio 4.2.3
La risposta finale è .
Passaggio 4.3
Il grafico è una funzione convessa sull'intervallo perché è positivo.
Funzione convessa su poiché è positivo
Funzione convessa su poiché è positivo
Passaggio 5
Sostituisci qualsiasi numero dell'intervallo nella derivata seconda e calcola per determinare la concavità.
Tocca per altri passaggi...
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 5.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.2.1.1
Eleva alla potenza di .
Passaggio 5.2.1.2
Moltiplica per .
Passaggio 5.2.1.3
Moltiplica per .
Passaggio 5.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 5.2.2.1
Sottrai da .
Passaggio 5.2.2.2
Somma e .
Passaggio 5.2.3
La risposta finale è .
Passaggio 5.3
Il grafico è una funzione concava sull'intervallo perché è negativo.
Funzione concava su poiché è negativo
Funzione concava su poiché è negativo
Passaggio 6
Sostituisci qualsiasi numero dell'intervallo nella derivata seconda e calcola per determinare la concavità.
Tocca per altri passaggi...
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 6.2.1.1
Eleva alla potenza di .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Moltiplica per .
Passaggio 6.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 6.2.2.1
Sottrai da .
Passaggio 6.2.2.2
Somma e .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
Il grafico è una funzione convessa sull'intervallo perché è positivo.
Funzione convessa su poiché è positivo
Funzione convessa su poiché è positivo
Passaggio 7
Il grafico è una funzione concava quando la derivata seconda è negativa, mentre è una funzione convessa quando la derivata seconda è positiva.
Funzione convessa su poiché è positivo
Funzione concava su poiché è negativo
Funzione convessa su poiché è positivo
Passaggio 8