Calcolo Esempi

Trovare la Concavità p(x) = cube root of x
Passaggio 1
Find the values where the second derivative is equal to .
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 1.1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Usa per riscrivere come .
Passaggio 1.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.1.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.1.1.4
e .
Passaggio 1.1.1.5
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.1.6
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.1.1.6.1
Moltiplica per .
Passaggio 1.1.1.6.2
Sottrai da .
Passaggio 1.1.1.7
Sposta il negativo davanti alla frazione.
Passaggio 1.1.1.8
Semplifica.
Tocca per altri passaggi...
Passaggio 1.1.1.8.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 1.1.1.8.2
Moltiplica per .
Passaggio 1.1.2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Applica le regole di base degli esponenti.
Tocca per altri passaggi...
Passaggio 1.1.2.2.1
Riscrivi come .
Passaggio 1.1.2.2.2
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 1.1.2.2.2.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 1.1.2.2.2.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.1.2.2.2.2.1
e .
Passaggio 1.1.2.2.2.2.2
Moltiplica per .
Passaggio 1.1.2.2.2.3
Sposta il negativo davanti alla frazione.
Passaggio 1.1.2.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.4
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.1.2.5
e .
Passaggio 1.1.2.6
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.2.7
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.1.2.7.1
Moltiplica per .
Passaggio 1.1.2.7.2
Sottrai da .
Passaggio 1.1.2.8
Sposta il negativo davanti alla frazione.
Passaggio 1.1.2.9
e .
Passaggio 1.1.2.10
Moltiplica per .
Passaggio 1.1.2.11
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.1.2.11.1
Moltiplica per .
Passaggio 1.1.2.11.2
Sposta alla sinistra di .
Passaggio 1.1.2.11.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.1.3
La derivata seconda di rispetto a è .
Passaggio 1.2
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 1.2.1
Imposta la derivata seconda uguale a .
Passaggio 1.2.2
Poni il numeratore uguale a zero.
Passaggio 1.2.3
Poiché , non ci sono soluzioni.
Nessuna soluzione
Nessuna soluzione
Nessuna soluzione
Passaggio 2
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 3
Il grafico è una funzione concava perché la derivata seconda è negativa.
Il grafico è una funzione concava
Passaggio 4