Calcolo Esempi

Trovare la Concavità y=x-sin(x)
Passaggio 1
Scrivi come funzione.
Passaggio 2
Find the values where the second derivative is equal to .
Tocca per altri passaggi...
Passaggio 2.1
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 2.1.1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 2.1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.1.2.2
La derivata di rispetto a è .
Passaggio 2.1.2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.1.2.1
Differenzia.
Tocca per altri passaggi...
Passaggio 2.1.2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.2.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.1.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2.2.2
La derivata di rispetto a è .
Passaggio 2.1.2.2.3
Moltiplica per .
Passaggio 2.1.2.2.4
Moltiplica per .
Passaggio 2.1.2.3
Somma e .
Passaggio 2.1.3
La derivata seconda di rispetto a è .
Passaggio 2.2
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.2.1
Imposta la derivata seconda uguale a .
Passaggio 2.2.2
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.2.3.1
Il valore esatto di è .
Passaggio 2.2.4
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 2.2.5
Sottrai da .
Passaggio 2.2.6
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 2.2.6.1
Si può calcolare il periodo della funzione usando .
Passaggio 2.2.6.2
Sostituisci con nella formula per il periodo.
Passaggio 2.2.6.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 2.2.6.4
Dividi per .
Passaggio 2.2.7
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
Passaggio 2.2.8
Consolida le risposte.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 3
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 4
Crea intervalli attorno ai valori di per cui la derivata seconda è zero o indefinita.
Passaggio 5
Sostituisci qualsiasi numero dell'intervallo nella derivata seconda e calcola per determinare la concavità.
Tocca per altri passaggi...
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 5.2.1
Il valore esatto di è .
Passaggio 5.2.2
La risposta finale è .
Passaggio 5.3
Il grafico è una funzione convessa sull'intervallo perché è positivo.
Funzione convessa su poiché è positivo
Funzione convessa su poiché è positivo
Passaggio 6