Calcolo Esempi

Trovare Dove è Crescente/Decrescente Usando le Derivate y=1/x
Passaggio 1
Scrivi come funzione.
Passaggio 2
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 2.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 2.1.1
Riscrivi come .
Passaggio 2.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.3
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 2.2
La derivata prima di rispetto a è .
Passaggio 3
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 3.1
Poni la derivata prima uguale a .
Passaggio 3.2
Poni il numeratore uguale a zero.
Passaggio 3.3
Poiché , non ci sono soluzioni.
Nessuna soluzione
Nessuna soluzione
Passaggio 4
Non ci sono valori di nel dominio del problema originale per cui la derivata sia o indefinita.
Nessun punto critico trovato
Passaggio 5
Trova il punto in cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 5.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 5.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.2.1
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 5.2.2
Semplifica .
Tocca per altri passaggi...
Passaggio 5.2.2.1
Riscrivi come .
Passaggio 5.2.2.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 5.2.2.3
Più o meno è .
Passaggio 6
Dopo aver trovato il punto che rende la derivata uguale a o indefinita, l'intervallo per verificare dove è crescente e dove è decrescente corrisponde a .
Passaggio 7
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 7.2.1
Eleva alla potenza di .
Passaggio 7.2.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 7.2.2.1
Elimina il fattore comune.
Passaggio 7.2.2.2
Riscrivi l'espressione.
Passaggio 7.2.3
Moltiplica per .
Passaggio 7.2.4
La risposta finale è .
Passaggio 7.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 8
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 8.1
Sostituisci la variabile con nell'espressione.
Passaggio 8.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 8.2.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 8.2.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 8.2.2.1
Elimina il fattore comune.
Passaggio 8.2.2.2
Riscrivi l'espressione.
Passaggio 8.2.3
Moltiplica per .
Passaggio 8.2.4
La risposta finale è .
Passaggio 8.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 9
Elenca gli intervalli in cui la funzione è crescente e decrescente.
Decrescente su:
Passaggio 10