Calcolo Esempi

Trovare i Punti di Flesso x^2-4x+3
Passaggio 1
Scrivi come funzione.
Passaggio 2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 2.1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 2.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.2.3
Moltiplica per .
Passaggio 2.1.3
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 2.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.3.2
Somma e .
Passaggio 2.2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.2.3
Moltiplica per .
Passaggio 2.2.3
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 2.2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.3.2
Somma e .
Passaggio 2.3
La derivata seconda di rispetto a è .
Passaggio 3
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 3.1
Imposta la derivata seconda uguale a .
Passaggio 3.2
Poiché , non ci sono soluzioni.
Nessuna soluzione
Nessuna soluzione
Passaggio 4
Non è stato trovato alcun valore in grado di rendere la derivata seconda uguale a .
Nessun punto di flesso